marianafmedeiros commited on
Commit
21537b0
·
1 Parent(s): 35768ab

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 846.46 +/- 66.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fc226c01a3ded0157ef42777d71caa09aee1c739876df27f46eb0ca3e1fce56
3
+ size 129418
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x792e45d0c8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792e45d0c940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792e45d0c9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792e45d0ca60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x792e45d0caf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x792e45d0cb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x792e45d0cc10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792e45d0cca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x792e45d0cd30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792e45d0cdc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792e45d0ce50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x792e45d0cee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x792eaa232440>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1689818100054282471,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "_last_obs": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCQOb+bjQw/n63BPp6vr75ZmT0/e9d/PvoEvT72jTc/yVO6v4ryeLuAM2a/LN+hOyXxy7+wGwg+/87Du9eMlr7DaHY+y7BsPviBnD5I+IM+lcgTPNfswz2wP46/lohJveOMzD7vrsg+1S7TPp9V7T7EvTi/QUcNP/EAwT57MfS94weDPvU5BD5/M8A+KM42P/JLur/G4yq5AB5lvzJjFj2eRMu/jvAWPQuKZbyBs2a9JWJ9PjMGmDwL4J8+MywgPjHu/jsFZDu941mOv7XhLr3jjMw+767IPtUu0z6fVe0+VVs4vyiSDT8Ku8A+SswiPRL0Cz3hVvo9oXXBPviENT9/TLq//C8du6fmY79iq5Y99Y3Kv09UkD3zyoK8FcENPZ3VfD68sgC98uOhPk5LBT5Her87WPDzvFEYjr/NpVY844zMPu+uyD7VLtM+n1XtPkY+OL+29Qw/40zBPullYD3TIH6+pzbjPRauvz5otjM/F1m6v924lrtjvmK/+0NQPfFFyr/Qj9k7XBJKvAucRT62RXQ+Y1YQvjpGoj6WTRE9jqO8Oik1Zb0iTY2/kzLpPeOMzD7vrsg+1S7TPp9V7T6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
+ },
47
+ "_last_episode_starts": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
50
+ },
51
+ "_last_original_obs": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACCut82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApSqSOwAAAAAXnOe/AAAAAGhSlD0AAAAAXGvbPwAAAAByQBI+AAAAACoo4z8AAAAAAOipvQAAAAAnquW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaz2JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDSg370AAAAAc1DsvwAAAAA7n3O9AAAAAL3J+D8AAAAA3lvjPQAAAADm0d4/AAAAAIrWv7wAAAAAZvXmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAkN7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGJ7+9AAAAAO5D3L8AAAAASATIPQAAAACqnvI/AAAAAMrRer0AAAAAOVbhPwAAAACfAQs+AAAAANtI/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA22n02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD9/RvQAAAABrAvC/AAAAAEbfdD0AAAAABtv8PwAAAABCBgu8AAAAANYn5j8AAAAAIAk5vAAAAACkx+W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
+ },
55
+ "_episode_num": 0,
56
+ "use_sde": true,
57
+ "sde_sample_freq": -1,
58
+ "_current_progress_remaining": 0.0,
59
+ "_stats_window_size": 100,
60
+ "ep_info_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHVeMT8HfMyMAWyUTUcCjAF0lEdArpFz2+PBBXV9lChoBke//gajvd/KAGgHSw1oCEdArpGlByCFsnV9lChoBkdAXsoVTJhfB2gHTQIBaAhHQK6R/zbvgFZ1fZQoaAZHQFz2pqREF4doB0v6aAhHQK6Vg5OrQw91fZQoaAZHQGNXGReTmnxoB0v6aAhHQK6ZHreqJdl1fZQoaAZHQGW5+1KGtZFoB0v6aAhHQK6coaAnUlR1fZQoaAZHQGTilsxfv4NoB0v6aAhHQK6gRlVcUud1fZQoaAZHQIPmic7QswtoB00kBGgIR0CuoL/L9uP4dX2UKGgGR0BkiUJ6Y3NtaAdL+mgIR0CupYfpdKNAdX2UKGgGR0AhEnAIppevaAdLE2gIR0CupedlNDc/dX2UKGgGR0Bi60H+qBEsaAdL+mgIR0Cuqpwnx8UmdX2UKGgGR0BjBHq9oN/faAdL+mgIR0CurmeaBqbjdX2UKGgGR0BfdhUBGQS0aAdL+mgIR0CusgowEhaDdX2UKGgGR0Bgg71M/QjVaAdL+mgIR0Cutb+/xlQNdX2UKGgGR0CIMJIe5nUUaAdNOQVoCEdArrY39FWn0nV9lChoBkdAO59PDYRNAWgHSzhoCEdArraFw1ivxHV9lChoBkdAYSBVyWAwwmgHS/poCEdArro6cEvCdnV9lChoBkdAYFNfrKNhmWgHS/poCEdArr44tDlYEHV9lChoBkdAYfZoAXEZSGgHS/poCEdArsN+uaF23nV9lChoBkdApSK5/Aj6e2gHTdERaAhHQK7ESOby6MB1fZQoaAZHQFxYseGO+7FoB0vYaAhHQK7Hg0/nnuB1fZQoaAZHQIH05jBl+VloB00mBGgIR0CuyA6Rp1zRdX2UKGgGR0BSO6Dwpe/paAdLg2gIR0CuyUko4MnadX2UKGgGR0BQo1fNRm9QaAdLd2gIR0CuyakQwsXjdX2UKGgGR0CgqJa0x/NJaAdNjA5oCEdArss1VghKUXV9lChoBkdAYXi4vvjOs2gHS/poCEdArs7xhpg1FnV9lChoBkdAYe/K6FuejGgHS/poCEdArtK/TG5tnHV9lChoBkdAeYq1YyO7x2gHTdMCaAhHQK7UAGHHmzV1fZQoaAZHQIM5dkvsZ51oB01VBGgIR0Cu1A6Xa8HwdX2UKGgGR0BNEVlPJq7AaAdLXWgIR0Cu1T6t9x6wdX2UKGgGR0Bi5bZtelbeaAdL+mgIR0Cu2UvCMxXXdX2UKGgGR0BrcwPI4lyBaAdNaAFoCEdArtm/yZrpJXV9lChoBkdAYJ/ROUMXrWgHS/poCEdArt882eg+QnV9lChoBkdARUrFjurp7mgHS1loCEdAruC5FXq7iHV9lChoBkdAZZ8w3YL9dmgHS/poCEdAruRf1anrIHV9lChoBkdAYyDyc0+C9WgHS/poCEdArufiAhB7eHV9lChoBkdAYXVTMqz7dmgHS/poCEdAruutndweeXV9lChoBkdAhrpsXzlLe2gHTcgEaAhHQK7tQajvd/J1fZQoaAZHQI7vWNkvsZ5oB017BmgIR0Cu7VOJUHY6dX2UKGgGR0BiMRJyyUs4aAdL+mgIR0Cu8N8eCCjDdX2UKGgGR0Bi0itHQQcxaAdL+mgIR0Cu9NQ9JSR9dX2UKGgGR0B7sj987ZFoaAdN/wJoCEdArvgHSpiqhnV9lChoBkdAYmmOGTLW7WgHS/poCEdArvzFnVXmvHV9lChoBkdAYXoKvV3EAGgHS/poCEdArwBKde6ZpnV9lChoBkdAXcZxaPjn3mgHS/poCEdArwPy+L3sX3V9lChoBkdAY/qO1fE4vWgHS/poCEdArwdvhVENOXV9lChoBkdAZVNHsC1Z1WgHS/poCEdArwsh9PUKA3V9lChoBkdAZDBq7iADrGgHS/poCEdArw7W2kSElHV9lChoBkdAYv5vAoG6gGgHS/poCEdArxP1vMr3CnV9lChoBkdAkr+M/2TPjWgHTdkHaAhHQK8Wa64Ds+p1fZQoaAZHQGEk5Nfw7T5oB0v6aAhHQK8aOiiZfD11fZQoaAZHQGUg6Zx7zCloB0v6aAhHQK8dzQ2MsH11fZQoaAZHQJ0Lhu89Oh1oB00HDGgIR0CvHsLdN34cdX2UKGgGR0BmKgqI7/4qaAdL+mgIR0CvIlgzguRLdX2UKGgGR0BnlqX8fmtAaAdL+mgIR0CvJfgc94eLdX2UKGgGR0BjpMwQDmr9aAdL+mgIR0CvKWquB+WodX2UKGgGR0BhRoxYaHbiaAdL+mgIR0CvLk0yP+4tdX2UKGgGR0Bd/AQxvegtaAdL+mgIR0CvM145Lh73dX2UKGgGR0CMfnF5OafBaAdNnQVoCEdArzUY4bS7XnV9lChoBkdAYN1AfMfRu2gHS/poCEdArzjJujynUHV9lChoBkdAZ7FxhlUZN2gHS/poCEdArzwsVclgMXV9lChoBkdAYtNedCmdiGgHS/poCEdArz/v2h7E53V9lChoBkdAYbNGxUvPC2gHS/poCEdAr0OEqBmPHXV9lChoBkdAY7EBK+SKWWgHS/poCEdAr0dM0iyIHnV9lChoBkdAZTgoQ4CIUWgHS/poCEdAr0yI0dilSHV9lChoBkdAZYx4mkWRBGgHS/poCEdAr1CRAlfJFXV9lChoBkdAZe7pM6BAfWgHS/poCEdAr1QJkupS8HV9lChoBkdAZzY6wMYuTWgHS/poCEdAr1e9R3u/lHV9lChoBkdAZmtfP5YYBWgHS/poCEdAr1svK6nR9nV9lChoBkdAZj0ALiMo+mgHS/poCEdAr17RtBOYY3V9lChoBkdAaXoRuCPIXGgHS/poCEdAr2KusgdOqXV9lChoBkdAZRK8kD6nBWgHS/poCEdAr2gY4EOiFnV9lChoBkdAZ4VyIYWLxmgHS/poCEdAr2wQSSNfgXV9lChoBkdAYaeQzUI9kmgHS/poCEdAr2++zt1IRXV9lChoBkdAZLmHEdeY2WgHS/poCEdAr3NW2TgVGnV9lChoBkdAZwtJRwZOz2gHS/poCEdAr3bNt0mtyXV9lChoBkdAZmo1KGtZFGgHS/poCEdAr3onEbYK6XV9lChoBkdAYpu1hsqJ/GgHS/poCEdAr34ayIHkcXV9lChoBkdAaBLsqrilzmgHS/poCEdAr4NptFa0QnV9lChoBkdAZQdT5O8CgmgHS/poCEdAr4dQc7yQP3V9lChoBkdAZgITpPhybWgHS/poCEdAr4r92xIJ7nV9lChoBkdAZkGLKmsNlWgHS/poCEdAr45nwmVqvnV9lChoBkdAZvIGOdXkpGgHS/poCEdAr5IVtygf2nV9lChoBkdAaUdbhWHUMGgHS/poCEdAr5XCYiPhh3V9lChoBkdAZvpKlpGnXWgHS/poCEdAr5mXf0mMO3V9lChoBkdAaWfIre67NGgHS/poCEdAr58KsS00FnV9lChoBkdAZ84lWwNb1WgHS/poCEdAr6MHLzPKMnV9lChoBkdAZUV8VHnU2GgHS/poCEdAr6asH+qBE3V9lChoBkdAZAwMvysjmmgHS/poCEdAr6pLnmq5snV9lChoBkdAZDHQu27Wd2gHS/poCEdAr63w1ejVQXV9lChoBkdAZniMx46fa2gHS/poCEdAr7GPlwLmZHV9lChoBkdAZ425jH4oJGgHS/poCEdAr7VKSFGoaXV9lChoBkdAZ7e274BV/GgHS/poCEdAr7qUSGrS3XV9lChoBkdAZZH8R+SbIGgHS/poCEdAr75/WSU1RHV9lChoBkdAaNZNW2gFo2gHS/poCEdAr8IBXlr/KnV9lChoBkdAZFSgIQe3hGgHS/poCEdAr8WqFuejEnV9lChoBkdAZyDZg5R0l2gHS/poCEdAr8lAyEcsDnV9lChoBkdAaQbzwtrbg2gHS/poCEdAr84Qzk6tDHV9lChoBkdAaladkrf+CWgHS/poCEdAr9OlrAP/aXV9lChoBkdAZ/WJ+DvmYGgHS/poCEdAr9isb1h9cHVlLg=="
63
+ },
64
+ "ep_success_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
67
+ },
68
+ "_n_updates": 62500,
69
+ "n_steps": 8,
70
+ "gamma": 0.99,
71
+ "gae_lambda": 0.9,
72
+ "ent_coef": 0.0,
73
+ "vf_coef": 0.4,
74
+ "max_grad_norm": 0.5,
75
+ "normalize_advantage": false,
76
+ "observation_space": {
77
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
78
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
79
+ "dtype": "float32",
80
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
81
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
82
+ "_shape": [
83
+ 28
84
+ ],
85
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
86
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
87
+ "low_repr": "-inf",
88
+ "high_repr": "inf",
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True True True True True]",
96
+ "bounded_above": "[ True True True True True True True True]",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ }
111
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deff9f2d435efa1ce0561dc5b9474c10aef377667130e310e6aaaa6dcb837d4a
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbc5de7e42333a773d8800fa8d033cfe2dc25191d9c27bc758ae0c9acc1dae2f
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x792e45d0c8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792e45d0c940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792e45d0c9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792e45d0ca60>", "_build": "<function ActorCriticPolicy._build at 0x792e45d0caf0>", "forward": "<function ActorCriticPolicy.forward at 0x792e45d0cb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x792e45d0cc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792e45d0cca0>", "_predict": "<function ActorCriticPolicy._predict at 0x792e45d0cd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792e45d0cdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792e45d0ce50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x792e45d0cee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792eaa232440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689818100054282471, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCQOb+bjQw/n63BPp6vr75ZmT0/e9d/PvoEvT72jTc/yVO6v4ryeLuAM2a/LN+hOyXxy7+wGwg+/87Du9eMlr7DaHY+y7BsPviBnD5I+IM+lcgTPNfswz2wP46/lohJveOMzD7vrsg+1S7TPp9V7T7EvTi/QUcNP/EAwT57MfS94weDPvU5BD5/M8A+KM42P/JLur/G4yq5AB5lvzJjFj2eRMu/jvAWPQuKZbyBs2a9JWJ9PjMGmDwL4J8+MywgPjHu/jsFZDu941mOv7XhLr3jjMw+767IPtUu0z6fVe0+VVs4vyiSDT8Ku8A+SswiPRL0Cz3hVvo9oXXBPviENT9/TLq//C8du6fmY79iq5Y99Y3Kv09UkD3zyoK8FcENPZ3VfD68sgC98uOhPk5LBT5Her87WPDzvFEYjr/NpVY844zMPu+uyD7VLtM+n1XtPkY+OL+29Qw/40zBPullYD3TIH6+pzbjPRauvz5otjM/F1m6v924lrtjvmK/+0NQPfFFyr/Qj9k7XBJKvAucRT62RXQ+Y1YQvjpGoj6WTRE9jqO8Oik1Zb0iTY2/kzLpPeOMzD7vrsg+1S7TPp9V7T6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACCut82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApSqSOwAAAAAXnOe/AAAAAGhSlD0AAAAAXGvbPwAAAAByQBI+AAAAACoo4z8AAAAAAOipvQAAAAAnquW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaz2JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDSg370AAAAAc1DsvwAAAAA7n3O9AAAAAL3J+D8AAAAA3lvjPQAAAADm0d4/AAAAAIrWv7wAAAAAZvXmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAkN7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGJ7+9AAAAAO5D3L8AAAAASATIPQAAAACqnvI/AAAAAMrRer0AAAAAOVbhPwAAAACfAQs+AAAAANtI/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA22n02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD9/RvQAAAABrAvC/AAAAAEbfdD0AAAAABtv8PwAAAABCBgu8AAAAANYn5j8AAAAAIAk5vAAAAACkx+W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHVeMT8HfMyMAWyUTUcCjAF0lEdArpFz2+PBBXV9lChoBke//gajvd/KAGgHSw1oCEdArpGlByCFsnV9lChoBkdAXsoVTJhfB2gHTQIBaAhHQK6R/zbvgFZ1fZQoaAZHQFz2pqREF4doB0v6aAhHQK6Vg5OrQw91fZQoaAZHQGNXGReTmnxoB0v6aAhHQK6ZHreqJdl1fZQoaAZHQGW5+1KGtZFoB0v6aAhHQK6coaAnUlR1fZQoaAZHQGTilsxfv4NoB0v6aAhHQK6gRlVcUud1fZQoaAZHQIPmic7QswtoB00kBGgIR0CuoL/L9uP4dX2UKGgGR0BkiUJ6Y3NtaAdL+mgIR0CupYfpdKNAdX2UKGgGR0AhEnAIppevaAdLE2gIR0CupedlNDc/dX2UKGgGR0Bi60H+qBEsaAdL+mgIR0Cuqpwnx8UmdX2UKGgGR0BjBHq9oN/faAdL+mgIR0CurmeaBqbjdX2UKGgGR0BfdhUBGQS0aAdL+mgIR0CusgowEhaDdX2UKGgGR0Bgg71M/QjVaAdL+mgIR0Cutb+/xlQNdX2UKGgGR0CIMJIe5nUUaAdNOQVoCEdArrY39FWn0nV9lChoBkdAO59PDYRNAWgHSzhoCEdArraFw1ivxHV9lChoBkdAYSBVyWAwwmgHS/poCEdArro6cEvCdnV9lChoBkdAYFNfrKNhmWgHS/poCEdArr44tDlYEHV9lChoBkdAYfZoAXEZSGgHS/poCEdArsN+uaF23nV9lChoBkdApSK5/Aj6e2gHTdERaAhHQK7ESOby6MB1fZQoaAZHQFxYseGO+7FoB0vYaAhHQK7Hg0/nnuB1fZQoaAZHQIH05jBl+VloB00mBGgIR0CuyA6Rp1zRdX2UKGgGR0BSO6Dwpe/paAdLg2gIR0CuyUko4MnadX2UKGgGR0BQo1fNRm9QaAdLd2gIR0CuyakQwsXjdX2UKGgGR0CgqJa0x/NJaAdNjA5oCEdArss1VghKUXV9lChoBkdAYXi4vvjOs2gHS/poCEdArs7xhpg1FnV9lChoBkdAYe/K6FuejGgHS/poCEdArtK/TG5tnHV9lChoBkdAeYq1YyO7x2gHTdMCaAhHQK7UAGHHmzV1fZQoaAZHQIM5dkvsZ51oB01VBGgIR0Cu1A6Xa8HwdX2UKGgGR0BNEVlPJq7AaAdLXWgIR0Cu1T6t9x6wdX2UKGgGR0Bi5bZtelbeaAdL+mgIR0Cu2UvCMxXXdX2UKGgGR0BrcwPI4lyBaAdNaAFoCEdArtm/yZrpJXV9lChoBkdAYJ/ROUMXrWgHS/poCEdArt882eg+QnV9lChoBkdARUrFjurp7mgHS1loCEdAruC5FXq7iHV9lChoBkdAZZ8w3YL9dmgHS/poCEdAruRf1anrIHV9lChoBkdAYyDyc0+C9WgHS/poCEdArufiAhB7eHV9lChoBkdAYXVTMqz7dmgHS/poCEdAruutndweeXV9lChoBkdAhrpsXzlLe2gHTcgEaAhHQK7tQajvd/J1fZQoaAZHQI7vWNkvsZ5oB017BmgIR0Cu7VOJUHY6dX2UKGgGR0BiMRJyyUs4aAdL+mgIR0Cu8N8eCCjDdX2UKGgGR0Bi0itHQQcxaAdL+mgIR0Cu9NQ9JSR9dX2UKGgGR0B7sj987ZFoaAdN/wJoCEdArvgHSpiqhnV9lChoBkdAYmmOGTLW7WgHS/poCEdArvzFnVXmvHV9lChoBkdAYXoKvV3EAGgHS/poCEdArwBKde6ZpnV9lChoBkdAXcZxaPjn3mgHS/poCEdArwPy+L3sX3V9lChoBkdAY/qO1fE4vWgHS/poCEdArwdvhVENOXV9lChoBkdAZVNHsC1Z1WgHS/poCEdArwsh9PUKA3V9lChoBkdAZDBq7iADrGgHS/poCEdArw7W2kSElHV9lChoBkdAYv5vAoG6gGgHS/poCEdArxP1vMr3CnV9lChoBkdAkr+M/2TPjWgHTdkHaAhHQK8Wa64Ds+p1fZQoaAZHQGEk5Nfw7T5oB0v6aAhHQK8aOiiZfD11fZQoaAZHQGUg6Zx7zCloB0v6aAhHQK8dzQ2MsH11fZQoaAZHQJ0Lhu89Oh1oB00HDGgIR0CvHsLdN34cdX2UKGgGR0BmKgqI7/4qaAdL+mgIR0CvIlgzguRLdX2UKGgGR0BnlqX8fmtAaAdL+mgIR0CvJfgc94eLdX2UKGgGR0BjpMwQDmr9aAdL+mgIR0CvKWquB+WodX2UKGgGR0BhRoxYaHbiaAdL+mgIR0CvLk0yP+4tdX2UKGgGR0Bd/AQxvegtaAdL+mgIR0CvM145Lh73dX2UKGgGR0CMfnF5OafBaAdNnQVoCEdArzUY4bS7XnV9lChoBkdAYN1AfMfRu2gHS/poCEdArzjJujynUHV9lChoBkdAZ7FxhlUZN2gHS/poCEdArzwsVclgMXV9lChoBkdAYtNedCmdiGgHS/poCEdArz/v2h7E53V9lChoBkdAYbNGxUvPC2gHS/poCEdAr0OEqBmPHXV9lChoBkdAY7EBK+SKWWgHS/poCEdAr0dM0iyIHnV9lChoBkdAZTgoQ4CIUWgHS/poCEdAr0yI0dilSHV9lChoBkdAZYx4mkWRBGgHS/poCEdAr1CRAlfJFXV9lChoBkdAZe7pM6BAfWgHS/poCEdAr1QJkupS8HV9lChoBkdAZzY6wMYuTWgHS/poCEdAr1e9R3u/lHV9lChoBkdAZmtfP5YYBWgHS/poCEdAr1svK6nR9nV9lChoBkdAZj0ALiMo+mgHS/poCEdAr17RtBOYY3V9lChoBkdAaXoRuCPIXGgHS/poCEdAr2KusgdOqXV9lChoBkdAZRK8kD6nBWgHS/poCEdAr2gY4EOiFnV9lChoBkdAZ4VyIYWLxmgHS/poCEdAr2wQSSNfgXV9lChoBkdAYaeQzUI9kmgHS/poCEdAr2++zt1IRXV9lChoBkdAZLmHEdeY2WgHS/poCEdAr3NW2TgVGnV9lChoBkdAZwtJRwZOz2gHS/poCEdAr3bNt0mtyXV9lChoBkdAZmo1KGtZFGgHS/poCEdAr3onEbYK6XV9lChoBkdAYpu1hsqJ/GgHS/poCEdAr34ayIHkcXV9lChoBkdAaBLsqrilzmgHS/poCEdAr4NptFa0QnV9lChoBkdAZQdT5O8CgmgHS/poCEdAr4dQc7yQP3V9lChoBkdAZgITpPhybWgHS/poCEdAr4r92xIJ7nV9lChoBkdAZkGLKmsNlWgHS/poCEdAr45nwmVqvnV9lChoBkdAZvIGOdXkpGgHS/poCEdAr5IVtygf2nV9lChoBkdAaUdbhWHUMGgHS/poCEdAr5XCYiPhh3V9lChoBkdAZvpKlpGnXWgHS/poCEdAr5mXf0mMO3V9lChoBkdAaWfIre67NGgHS/poCEdAr58KsS00FnV9lChoBkdAZ84lWwNb1WgHS/poCEdAr6MHLzPKMnV9lChoBkdAZUV8VHnU2GgHS/poCEdAr6asH+qBE3V9lChoBkdAZAwMvysjmmgHS/poCEdAr6pLnmq5snV9lChoBkdAZDHQu27Wd2gHS/poCEdAr63w1ejVQXV9lChoBkdAZniMx46fa2gHS/poCEdAr7GPlwLmZHV9lChoBkdAZ425jH4oJGgHS/poCEdAr7VKSFGoaXV9lChoBkdAZ7e274BV/GgHS/poCEdAr7qUSGrS3XV9lChoBkdAZZH8R+SbIGgHS/poCEdAr75/WSU1RHV9lChoBkdAaNZNW2gFo2gHS/poCEdAr8IBXlr/KnV9lChoBkdAZFSgIQe3hGgHS/poCEdAr8WqFuejEnV9lChoBkdAZyDZg5R0l2gHS/poCEdAr8lAyEcsDnV9lChoBkdAaQbzwtrbg2gHS/poCEdAr84Qzk6tDHV9lChoBkdAaladkrf+CWgHS/poCEdAr9OlrAP/aXV9lChoBkdAZ/WJ+DvmYGgHS/poCEdAr9isb1h9cHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 846.4605526792817, "std_reward": 66.62266754237656, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-20T12:19:59.947792"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0e405f52ea1a9a1aefd3e4fdd2bd021b2fcec631c5b43278b197f10aaee8d23
3
+ size 2376