Commit
·
21537b0
1
Parent(s):
35768ab
Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +111 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +9 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 846.46 +/- 66.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fc226c01a3ded0157ef42777d71caa09aee1c739876df27f46eb0ca3e1fce56
|
3 |
+
size 129418
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x792e45d0c8b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792e45d0c940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792e45d0c9d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792e45d0ca60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x792e45d0caf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x792e45d0cb80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x792e45d0cc10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792e45d0cca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x792e45d0cd30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792e45d0cdc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792e45d0ce50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x792e45d0cee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x792eaa232440>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1689818100054282471,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"_last_obs": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCQOb+bjQw/n63BPp6vr75ZmT0/e9d/PvoEvT72jTc/yVO6v4ryeLuAM2a/LN+hOyXxy7+wGwg+/87Du9eMlr7DaHY+y7BsPviBnD5I+IM+lcgTPNfswz2wP46/lohJveOMzD7vrsg+1S7TPp9V7T7EvTi/QUcNP/EAwT57MfS94weDPvU5BD5/M8A+KM42P/JLur/G4yq5AB5lvzJjFj2eRMu/jvAWPQuKZbyBs2a9JWJ9PjMGmDwL4J8+MywgPjHu/jsFZDu941mOv7XhLr3jjMw+767IPtUu0z6fVe0+VVs4vyiSDT8Ku8A+SswiPRL0Cz3hVvo9oXXBPviENT9/TLq//C8du6fmY79iq5Y99Y3Kv09UkD3zyoK8FcENPZ3VfD68sgC98uOhPk5LBT5Her87WPDzvFEYjr/NpVY844zMPu+uyD7VLtM+n1XtPkY+OL+29Qw/40zBPullYD3TIH6+pzbjPRauvz5otjM/F1m6v924lrtjvmK/+0NQPfFFyr/Qj9k7XBJKvAucRT62RXQ+Y1YQvjpGoj6WTRE9jqO8Oik1Zb0iTY2/kzLpPeOMzD7vrsg+1S7TPp9V7T6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
46 |
+
},
|
47 |
+
"_last_episode_starts": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
50 |
+
},
|
51 |
+
"_last_original_obs": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACCut82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApSqSOwAAAAAXnOe/AAAAAGhSlD0AAAAAXGvbPwAAAAByQBI+AAAAACoo4z8AAAAAAOipvQAAAAAnquW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaz2JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDSg370AAAAAc1DsvwAAAAA7n3O9AAAAAL3J+D8AAAAA3lvjPQAAAADm0d4/AAAAAIrWv7wAAAAAZvXmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAkN7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGJ7+9AAAAAO5D3L8AAAAASATIPQAAAACqnvI/AAAAAMrRer0AAAAAOVbhPwAAAACfAQs+AAAAANtI/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA22n02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD9/RvQAAAABrAvC/AAAAAEbfdD0AAAAABtv8PwAAAABCBgu8AAAAANYn5j8AAAAAIAk5vAAAAACkx+W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
54 |
+
},
|
55 |
+
"_episode_num": 0,
|
56 |
+
"use_sde": true,
|
57 |
+
"sde_sample_freq": -1,
|
58 |
+
"_current_progress_remaining": 0.0,
|
59 |
+
"_stats_window_size": 100,
|
60 |
+
"ep_info_buffer": {
|
61 |
+
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHVeMT8HfMyMAWyUTUcCjAF0lEdArpFz2+PBBXV9lChoBke//gajvd/KAGgHSw1oCEdArpGlByCFsnV9lChoBkdAXsoVTJhfB2gHTQIBaAhHQK6R/zbvgFZ1fZQoaAZHQFz2pqREF4doB0v6aAhHQK6Vg5OrQw91fZQoaAZHQGNXGReTmnxoB0v6aAhHQK6ZHreqJdl1fZQoaAZHQGW5+1KGtZFoB0v6aAhHQK6coaAnUlR1fZQoaAZHQGTilsxfv4NoB0v6aAhHQK6gRlVcUud1fZQoaAZHQIPmic7QswtoB00kBGgIR0CuoL/L9uP4dX2UKGgGR0BkiUJ6Y3NtaAdL+mgIR0CupYfpdKNAdX2UKGgGR0AhEnAIppevaAdLE2gIR0CupedlNDc/dX2UKGgGR0Bi60H+qBEsaAdL+mgIR0Cuqpwnx8UmdX2UKGgGR0BjBHq9oN/faAdL+mgIR0CurmeaBqbjdX2UKGgGR0BfdhUBGQS0aAdL+mgIR0CusgowEhaDdX2UKGgGR0Bgg71M/QjVaAdL+mgIR0Cutb+/xlQNdX2UKGgGR0CIMJIe5nUUaAdNOQVoCEdArrY39FWn0nV9lChoBkdAO59PDYRNAWgHSzhoCEdArraFw1ivxHV9lChoBkdAYSBVyWAwwmgHS/poCEdArro6cEvCdnV9lChoBkdAYFNfrKNhmWgHS/poCEdArr44tDlYEHV9lChoBkdAYfZoAXEZSGgHS/poCEdArsN+uaF23nV9lChoBkdApSK5/Aj6e2gHTdERaAhHQK7ESOby6MB1fZQoaAZHQFxYseGO+7FoB0vYaAhHQK7Hg0/nnuB1fZQoaAZHQIH05jBl+VloB00mBGgIR0CuyA6Rp1zRdX2UKGgGR0BSO6Dwpe/paAdLg2gIR0CuyUko4MnadX2UKGgGR0BQo1fNRm9QaAdLd2gIR0CuyakQwsXjdX2UKGgGR0CgqJa0x/NJaAdNjA5oCEdArss1VghKUXV9lChoBkdAYXi4vvjOs2gHS/poCEdArs7xhpg1FnV9lChoBkdAYe/K6FuejGgHS/poCEdArtK/TG5tnHV9lChoBkdAeYq1YyO7x2gHTdMCaAhHQK7UAGHHmzV1fZQoaAZHQIM5dkvsZ51oB01VBGgIR0Cu1A6Xa8HwdX2UKGgGR0BNEVlPJq7AaAdLXWgIR0Cu1T6t9x6wdX2UKGgGR0Bi5bZtelbeaAdL+mgIR0Cu2UvCMxXXdX2UKGgGR0BrcwPI4lyBaAdNaAFoCEdArtm/yZrpJXV9lChoBkdAYJ/ROUMXrWgHS/poCEdArt882eg+QnV9lChoBkdARUrFjurp7mgHS1loCEdAruC5FXq7iHV9lChoBkdAZZ8w3YL9dmgHS/poCEdAruRf1anrIHV9lChoBkdAYyDyc0+C9WgHS/poCEdArufiAhB7eHV9lChoBkdAYXVTMqz7dmgHS/poCEdAruutndweeXV9lChoBkdAhrpsXzlLe2gHTcgEaAhHQK7tQajvd/J1fZQoaAZHQI7vWNkvsZ5oB017BmgIR0Cu7VOJUHY6dX2UKGgGR0BiMRJyyUs4aAdL+mgIR0Cu8N8eCCjDdX2UKGgGR0Bi0itHQQcxaAdL+mgIR0Cu9NQ9JSR9dX2UKGgGR0B7sj987ZFoaAdN/wJoCEdArvgHSpiqhnV9lChoBkdAYmmOGTLW7WgHS/poCEdArvzFnVXmvHV9lChoBkdAYXoKvV3EAGgHS/poCEdArwBKde6ZpnV9lChoBkdAXcZxaPjn3mgHS/poCEdArwPy+L3sX3V9lChoBkdAY/qO1fE4vWgHS/poCEdArwdvhVENOXV9lChoBkdAZVNHsC1Z1WgHS/poCEdArwsh9PUKA3V9lChoBkdAZDBq7iADrGgHS/poCEdArw7W2kSElHV9lChoBkdAYv5vAoG6gGgHS/poCEdArxP1vMr3CnV9lChoBkdAkr+M/2TPjWgHTdkHaAhHQK8Wa64Ds+p1fZQoaAZHQGEk5Nfw7T5oB0v6aAhHQK8aOiiZfD11fZQoaAZHQGUg6Zx7zCloB0v6aAhHQK8dzQ2MsH11fZQoaAZHQJ0Lhu89Oh1oB00HDGgIR0CvHsLdN34cdX2UKGgGR0BmKgqI7/4qaAdL+mgIR0CvIlgzguRLdX2UKGgGR0BnlqX8fmtAaAdL+mgIR0CvJfgc94eLdX2UKGgGR0BjpMwQDmr9aAdL+mgIR0CvKWquB+WodX2UKGgGR0BhRoxYaHbiaAdL+mgIR0CvLk0yP+4tdX2UKGgGR0Bd/AQxvegtaAdL+mgIR0CvM145Lh73dX2UKGgGR0CMfnF5OafBaAdNnQVoCEdArzUY4bS7XnV9lChoBkdAYN1AfMfRu2gHS/poCEdArzjJujynUHV9lChoBkdAZ7FxhlUZN2gHS/poCEdArzwsVclgMXV9lChoBkdAYtNedCmdiGgHS/poCEdArz/v2h7E53V9lChoBkdAYbNGxUvPC2gHS/poCEdAr0OEqBmPHXV9lChoBkdAY7EBK+SKWWgHS/poCEdAr0dM0iyIHnV9lChoBkdAZTgoQ4CIUWgHS/poCEdAr0yI0dilSHV9lChoBkdAZYx4mkWRBGgHS/poCEdAr1CRAlfJFXV9lChoBkdAZe7pM6BAfWgHS/poCEdAr1QJkupS8HV9lChoBkdAZzY6wMYuTWgHS/poCEdAr1e9R3u/lHV9lChoBkdAZmtfP5YYBWgHS/poCEdAr1svK6nR9nV9lChoBkdAZj0ALiMo+mgHS/poCEdAr17RtBOYY3V9lChoBkdAaXoRuCPIXGgHS/poCEdAr2KusgdOqXV9lChoBkdAZRK8kD6nBWgHS/poCEdAr2gY4EOiFnV9lChoBkdAZ4VyIYWLxmgHS/poCEdAr2wQSSNfgXV9lChoBkdAYaeQzUI9kmgHS/poCEdAr2++zt1IRXV9lChoBkdAZLmHEdeY2WgHS/poCEdAr3NW2TgVGnV9lChoBkdAZwtJRwZOz2gHS/poCEdAr3bNt0mtyXV9lChoBkdAZmo1KGtZFGgHS/poCEdAr3onEbYK6XV9lChoBkdAYpu1hsqJ/GgHS/poCEdAr34ayIHkcXV9lChoBkdAaBLsqrilzmgHS/poCEdAr4NptFa0QnV9lChoBkdAZQdT5O8CgmgHS/poCEdAr4dQc7yQP3V9lChoBkdAZgITpPhybWgHS/poCEdAr4r92xIJ7nV9lChoBkdAZkGLKmsNlWgHS/poCEdAr45nwmVqvnV9lChoBkdAZvIGOdXkpGgHS/poCEdAr5IVtygf2nV9lChoBkdAaUdbhWHUMGgHS/poCEdAr5XCYiPhh3V9lChoBkdAZvpKlpGnXWgHS/poCEdAr5mXf0mMO3V9lChoBkdAaWfIre67NGgHS/poCEdAr58KsS00FnV9lChoBkdAZ84lWwNb1WgHS/poCEdAr6MHLzPKMnV9lChoBkdAZUV8VHnU2GgHS/poCEdAr6asH+qBE3V9lChoBkdAZAwMvysjmmgHS/poCEdAr6pLnmq5snV9lChoBkdAZDHQu27Wd2gHS/poCEdAr63w1ejVQXV9lChoBkdAZniMx46fa2gHS/poCEdAr7GPlwLmZHV9lChoBkdAZ425jH4oJGgHS/poCEdAr7VKSFGoaXV9lChoBkdAZ7e274BV/GgHS/poCEdAr7qUSGrS3XV9lChoBkdAZZH8R+SbIGgHS/poCEdAr75/WSU1RHV9lChoBkdAaNZNW2gFo2gHS/poCEdAr8IBXlr/KnV9lChoBkdAZFSgIQe3hGgHS/poCEdAr8WqFuejEnV9lChoBkdAZyDZg5R0l2gHS/poCEdAr8lAyEcsDnV9lChoBkdAaQbzwtrbg2gHS/poCEdAr84Qzk6tDHV9lChoBkdAaladkrf+CWgHS/poCEdAr9OlrAP/aXV9lChoBkdAZ/WJ+DvmYGgHS/poCEdAr9isb1h9cHVlLg=="
|
63 |
+
},
|
64 |
+
"ep_success_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
67 |
+
},
|
68 |
+
"_n_updates": 62500,
|
69 |
+
"n_steps": 8,
|
70 |
+
"gamma": 0.99,
|
71 |
+
"gae_lambda": 0.9,
|
72 |
+
"ent_coef": 0.0,
|
73 |
+
"vf_coef": 0.4,
|
74 |
+
"max_grad_norm": 0.5,
|
75 |
+
"normalize_advantage": false,
|
76 |
+
"observation_space": {
|
77 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
78 |
+
":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
|
79 |
+
"dtype": "float32",
|
80 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
81 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
82 |
+
"_shape": [
|
83 |
+
28
|
84 |
+
],
|
85 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
86 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
87 |
+
"low_repr": "-inf",
|
88 |
+
"high_repr": "inf",
|
89 |
+
"_np_random": null
|
90 |
+
},
|
91 |
+
"action_space": {
|
92 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
93 |
+
":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
|
94 |
+
"dtype": "float32",
|
95 |
+
"bounded_below": "[ True True True True True True True True]",
|
96 |
+
"bounded_above": "[ True True True True True True True True]",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"low_repr": "-1.0",
|
103 |
+
"high_repr": "1.0",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4,
|
107 |
+
"lr_schedule": {
|
108 |
+
":type:": "<class 'function'>",
|
109 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
110 |
+
}
|
111 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deff9f2d435efa1ce0561dc5b9474c10aef377667130e310e6aaaa6dcb837d4a
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbc5de7e42333a773d8800fa8d033cfe2dc25191d9c27bc758ae0c9acc1dae2f
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x792e45d0c8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792e45d0c940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792e45d0c9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792e45d0ca60>", "_build": "<function ActorCriticPolicy._build at 0x792e45d0caf0>", "forward": "<function ActorCriticPolicy.forward at 0x792e45d0cb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x792e45d0cc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792e45d0cca0>", "_predict": "<function ActorCriticPolicy._predict at 0x792e45d0cd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792e45d0cdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792e45d0ce50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x792e45d0cee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792eaa232440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689818100054282471, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCQOb+bjQw/n63BPp6vr75ZmT0/e9d/PvoEvT72jTc/yVO6v4ryeLuAM2a/LN+hOyXxy7+wGwg+/87Du9eMlr7DaHY+y7BsPviBnD5I+IM+lcgTPNfswz2wP46/lohJveOMzD7vrsg+1S7TPp9V7T7EvTi/QUcNP/EAwT57MfS94weDPvU5BD5/M8A+KM42P/JLur/G4yq5AB5lvzJjFj2eRMu/jvAWPQuKZbyBs2a9JWJ9PjMGmDwL4J8+MywgPjHu/jsFZDu941mOv7XhLr3jjMw+767IPtUu0z6fVe0+VVs4vyiSDT8Ku8A+SswiPRL0Cz3hVvo9oXXBPviENT9/TLq//C8du6fmY79iq5Y99Y3Kv09UkD3zyoK8FcENPZ3VfD68sgC98uOhPk5LBT5Her87WPDzvFEYjr/NpVY844zMPu+uyD7VLtM+n1XtPkY+OL+29Qw/40zBPullYD3TIH6+pzbjPRauvz5otjM/F1m6v924lrtjvmK/+0NQPfFFyr/Qj9k7XBJKvAucRT62RXQ+Y1YQvjpGoj6WTRE9jqO8Oik1Zb0iTY2/kzLpPeOMzD7vrsg+1S7TPp9V7T6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACCut82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApSqSOwAAAAAXnOe/AAAAAGhSlD0AAAAAXGvbPwAAAAByQBI+AAAAACoo4z8AAAAAAOipvQAAAAAnquW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaz2JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDSg370AAAAAc1DsvwAAAAA7n3O9AAAAAL3J+D8AAAAA3lvjPQAAAADm0d4/AAAAAIrWv7wAAAAAZvXmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAkN7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGJ7+9AAAAAO5D3L8AAAAASATIPQAAAACqnvI/AAAAAMrRer0AAAAAOVbhPwAAAACfAQs+AAAAANtI/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA22n02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD9/RvQAAAABrAvC/AAAAAEbfdD0AAAAABtv8PwAAAABCBgu8AAAAANYn5j8AAAAAIAk5vAAAAACkx+W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHVeMT8HfMyMAWyUTUcCjAF0lEdArpFz2+PBBXV9lChoBke//gajvd/KAGgHSw1oCEdArpGlByCFsnV9lChoBkdAXsoVTJhfB2gHTQIBaAhHQK6R/zbvgFZ1fZQoaAZHQFz2pqREF4doB0v6aAhHQK6Vg5OrQw91fZQoaAZHQGNXGReTmnxoB0v6aAhHQK6ZHreqJdl1fZQoaAZHQGW5+1KGtZFoB0v6aAhHQK6coaAnUlR1fZQoaAZHQGTilsxfv4NoB0v6aAhHQK6gRlVcUud1fZQoaAZHQIPmic7QswtoB00kBGgIR0CuoL/L9uP4dX2UKGgGR0BkiUJ6Y3NtaAdL+mgIR0CupYfpdKNAdX2UKGgGR0AhEnAIppevaAdLE2gIR0CupedlNDc/dX2UKGgGR0Bi60H+qBEsaAdL+mgIR0Cuqpwnx8UmdX2UKGgGR0BjBHq9oN/faAdL+mgIR0CurmeaBqbjdX2UKGgGR0BfdhUBGQS0aAdL+mgIR0CusgowEhaDdX2UKGgGR0Bgg71M/QjVaAdL+mgIR0Cutb+/xlQNdX2UKGgGR0CIMJIe5nUUaAdNOQVoCEdArrY39FWn0nV9lChoBkdAO59PDYRNAWgHSzhoCEdArraFw1ivxHV9lChoBkdAYSBVyWAwwmgHS/poCEdArro6cEvCdnV9lChoBkdAYFNfrKNhmWgHS/poCEdArr44tDlYEHV9lChoBkdAYfZoAXEZSGgHS/poCEdArsN+uaF23nV9lChoBkdApSK5/Aj6e2gHTdERaAhHQK7ESOby6MB1fZQoaAZHQFxYseGO+7FoB0vYaAhHQK7Hg0/nnuB1fZQoaAZHQIH05jBl+VloB00mBGgIR0CuyA6Rp1zRdX2UKGgGR0BSO6Dwpe/paAdLg2gIR0CuyUko4MnadX2UKGgGR0BQo1fNRm9QaAdLd2gIR0CuyakQwsXjdX2UKGgGR0CgqJa0x/NJaAdNjA5oCEdArss1VghKUXV9lChoBkdAYXi4vvjOs2gHS/poCEdArs7xhpg1FnV9lChoBkdAYe/K6FuejGgHS/poCEdArtK/TG5tnHV9lChoBkdAeYq1YyO7x2gHTdMCaAhHQK7UAGHHmzV1fZQoaAZHQIM5dkvsZ51oB01VBGgIR0Cu1A6Xa8HwdX2UKGgGR0BNEVlPJq7AaAdLXWgIR0Cu1T6t9x6wdX2UKGgGR0Bi5bZtelbeaAdL+mgIR0Cu2UvCMxXXdX2UKGgGR0BrcwPI4lyBaAdNaAFoCEdArtm/yZrpJXV9lChoBkdAYJ/ROUMXrWgHS/poCEdArt882eg+QnV9lChoBkdARUrFjurp7mgHS1loCEdAruC5FXq7iHV9lChoBkdAZZ8w3YL9dmgHS/poCEdAruRf1anrIHV9lChoBkdAYyDyc0+C9WgHS/poCEdArufiAhB7eHV9lChoBkdAYXVTMqz7dmgHS/poCEdAruutndweeXV9lChoBkdAhrpsXzlLe2gHTcgEaAhHQK7tQajvd/J1fZQoaAZHQI7vWNkvsZ5oB017BmgIR0Cu7VOJUHY6dX2UKGgGR0BiMRJyyUs4aAdL+mgIR0Cu8N8eCCjDdX2UKGgGR0Bi0itHQQcxaAdL+mgIR0Cu9NQ9JSR9dX2UKGgGR0B7sj987ZFoaAdN/wJoCEdArvgHSpiqhnV9lChoBkdAYmmOGTLW7WgHS/poCEdArvzFnVXmvHV9lChoBkdAYXoKvV3EAGgHS/poCEdArwBKde6ZpnV9lChoBkdAXcZxaPjn3mgHS/poCEdArwPy+L3sX3V9lChoBkdAY/qO1fE4vWgHS/poCEdArwdvhVENOXV9lChoBkdAZVNHsC1Z1WgHS/poCEdArwsh9PUKA3V9lChoBkdAZDBq7iADrGgHS/poCEdArw7W2kSElHV9lChoBkdAYv5vAoG6gGgHS/poCEdArxP1vMr3CnV9lChoBkdAkr+M/2TPjWgHTdkHaAhHQK8Wa64Ds+p1fZQoaAZHQGEk5Nfw7T5oB0v6aAhHQK8aOiiZfD11fZQoaAZHQGUg6Zx7zCloB0v6aAhHQK8dzQ2MsH11fZQoaAZHQJ0Lhu89Oh1oB00HDGgIR0CvHsLdN34cdX2UKGgGR0BmKgqI7/4qaAdL+mgIR0CvIlgzguRLdX2UKGgGR0BnlqX8fmtAaAdL+mgIR0CvJfgc94eLdX2UKGgGR0BjpMwQDmr9aAdL+mgIR0CvKWquB+WodX2UKGgGR0BhRoxYaHbiaAdL+mgIR0CvLk0yP+4tdX2UKGgGR0Bd/AQxvegtaAdL+mgIR0CvM145Lh73dX2UKGgGR0CMfnF5OafBaAdNnQVoCEdArzUY4bS7XnV9lChoBkdAYN1AfMfRu2gHS/poCEdArzjJujynUHV9lChoBkdAZ7FxhlUZN2gHS/poCEdArzwsVclgMXV9lChoBkdAYtNedCmdiGgHS/poCEdArz/v2h7E53V9lChoBkdAYbNGxUvPC2gHS/poCEdAr0OEqBmPHXV9lChoBkdAY7EBK+SKWWgHS/poCEdAr0dM0iyIHnV9lChoBkdAZTgoQ4CIUWgHS/poCEdAr0yI0dilSHV9lChoBkdAZYx4mkWRBGgHS/poCEdAr1CRAlfJFXV9lChoBkdAZe7pM6BAfWgHS/poCEdAr1QJkupS8HV9lChoBkdAZzY6wMYuTWgHS/poCEdAr1e9R3u/lHV9lChoBkdAZmtfP5YYBWgHS/poCEdAr1svK6nR9nV9lChoBkdAZj0ALiMo+mgHS/poCEdAr17RtBOYY3V9lChoBkdAaXoRuCPIXGgHS/poCEdAr2KusgdOqXV9lChoBkdAZRK8kD6nBWgHS/poCEdAr2gY4EOiFnV9lChoBkdAZ4VyIYWLxmgHS/poCEdAr2wQSSNfgXV9lChoBkdAYaeQzUI9kmgHS/poCEdAr2++zt1IRXV9lChoBkdAZLmHEdeY2WgHS/poCEdAr3NW2TgVGnV9lChoBkdAZwtJRwZOz2gHS/poCEdAr3bNt0mtyXV9lChoBkdAZmo1KGtZFGgHS/poCEdAr3onEbYK6XV9lChoBkdAYpu1hsqJ/GgHS/poCEdAr34ayIHkcXV9lChoBkdAaBLsqrilzmgHS/poCEdAr4NptFa0QnV9lChoBkdAZQdT5O8CgmgHS/poCEdAr4dQc7yQP3V9lChoBkdAZgITpPhybWgHS/poCEdAr4r92xIJ7nV9lChoBkdAZkGLKmsNlWgHS/poCEdAr45nwmVqvnV9lChoBkdAZvIGOdXkpGgHS/poCEdAr5IVtygf2nV9lChoBkdAaUdbhWHUMGgHS/poCEdAr5XCYiPhh3V9lChoBkdAZvpKlpGnXWgHS/poCEdAr5mXf0mMO3V9lChoBkdAaWfIre67NGgHS/poCEdAr58KsS00FnV9lChoBkdAZ84lWwNb1WgHS/poCEdAr6MHLzPKMnV9lChoBkdAZUV8VHnU2GgHS/poCEdAr6asH+qBE3V9lChoBkdAZAwMvysjmmgHS/poCEdAr6pLnmq5snV9lChoBkdAZDHQu27Wd2gHS/poCEdAr63w1ejVQXV9lChoBkdAZniMx46fa2gHS/poCEdAr7GPlwLmZHV9lChoBkdAZ425jH4oJGgHS/poCEdAr7VKSFGoaXV9lChoBkdAZ7e274BV/GgHS/poCEdAr7qUSGrS3XV9lChoBkdAZZH8R+SbIGgHS/poCEdAr75/WSU1RHV9lChoBkdAaNZNW2gFo2gHS/poCEdAr8IBXlr/KnV9lChoBkdAZFSgIQe3hGgHS/poCEdAr8WqFuejEnV9lChoBkdAZyDZg5R0l2gHS/poCEdAr8lAyEcsDnV9lChoBkdAaQbzwtrbg2gHS/poCEdAr84Qzk6tDHV9lChoBkdAaladkrf+CWgHS/poCEdAr9OlrAP/aXV9lChoBkdAZ/WJ+DvmYGgHS/poCEdAr9isb1h9cHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 846.4605526792817, "std_reward": 66.62266754237656, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-20T12:19:59.947792"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0e405f52ea1a9a1aefd3e4fdd2bd021b2fcec631c5b43278b197f10aaee8d23
|
3 |
+
size 2376
|