File size: 2,599 Bytes
2e32860
 
02d2338
 
 
 
 
 
 
 
2e32860
 
02d2338
2e32860
 
02d2338
2e32860
02d2338
2e32860
02d2338
2e32860
 
02d2338
2e32860
 
 
02d2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: transformers
tags:
- pytorch
datasets:
- allenai/c4
language:
- en
base_model:
- mistralai/Mistral-7B-Instruct-v0.3
---

# Model Card for Mistral-7B-Instruct-v0.3-GPTQ-4bit-gs128

<!-- Provide a quick summary of what the model is/does. -->
This model has been quantized to optimize performance and reduce memory usage without compromising accuracy significantly. The quantization process was performed using GPTQ with the `GPTQConfig` class from the `transformers` library.

Original Model: [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)

Model creator: [mistralai](https://huggingface.co/mistralai)


## Quantization Configuration

<!-- Provide a longer summary of what this model is. -->

- Bits: 4
- Data Type: INT4
- GPTQ group size: 128
- Act Order: True
- GPTQ Calibration Dataset: [C4](https://huggingface.co/datasets/allenai/c4)
- Model size: 4.17GB

For more details, see `quantization_config.json`

## Usage

This model can be used with Transformers:

### Transformers pipeline

```python
import transformers
import torch

model_id = "marinarosell/Mistral-7B-Instruct-v0.3-GPTQ-4bit-gs128"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
```

### Transformers AutoModelForCausalLM

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "marinarosell/Mistral-7B-Instruct-v0.3-GPTQ-4bit-gs128"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```

### Example Applications

Chatbots: Lightweight conversational agents.