marinone94's picture
Training in progress, epoch 0
1ce325b
#include "pipeline.hh"
#include "adjust_counts.hh"
#include "combine_counts.hh"
#include "corpus_count.hh"
#include "hash_gamma.hh"
#include "initial_probabilities.hh"
#include "interpolate.hh"
#include "output.hh"
#include "../common/compare.hh"
#include "../common/renumber.hh"
#include "../sizes.hh"
#include "../vocab.hh"
#include "../../util/exception.hh"
#include "../../util/file.hh"
#include "../../util/stream/io.hh"
#include <algorithm>
#include <iostream>
#include <fstream>
#include <vector>
namespace lm { namespace builder {
using util::stream::Sorts;
namespace {
void PrintStatistics(const std::vector<uint64_t> &counts, const std::vector<uint64_t> &counts_pruned, const std::vector<Discount> &discounts) {
std::cerr << "Statistics:\n";
for (size_t i = 0; i < counts.size(); ++i) {
std::cerr << (i + 1) << ' ' << counts_pruned[i];
if(counts[i] != counts_pruned[i])
std::cerr << "/" << counts[i];
for (size_t d = 1; d <= 3; ++d)
std::cerr << " D" << d << (d == 3 ? "+=" : "=") << discounts[i].amount[d];
std::cerr << '\n';
}
}
class Master {
public:
explicit Master(PipelineConfig &config, unsigned output_steps)
: config_(config), chains_(config.order), unigrams_(util::MakeTemp(config_.TempPrefix())), steps_(output_steps + 4) {
config_.minimum_block = std::max(NGram<BuildingPayload>::TotalSize(config_.order), config_.minimum_block);
}
const PipelineConfig &Config() const { return config_; }
util::stream::Chains &MutableChains() { return chains_; }
template <class T> Master &operator>>(const T &worker) {
chains_ >> worker;
return *this;
}
// This takes the (partially) sorted ngrams and sets up for adjusted counts.
void InitForAdjust(util::stream::Sort<SuffixOrder, CombineCounts> &ngrams, WordIndex types, std::size_t subtract_for_numbering) {
const std::size_t each_order_min = config_.minimum_block * config_.block_count;
// We know how many unigrams there are. Don't allocate more than needed to them.
const std::size_t min_chains = (config_.order - 1) * each_order_min +
std::min(types * NGram<BuildingPayload>::TotalSize(1), each_order_min);
// Prevent overflow in subtracting.
const std::size_t total = std::max<std::size_t>(config_.TotalMemory(), min_chains + subtract_for_numbering + config_.minimum_block);
// Do merge sort with calculated laziness.
const std::size_t merge_using = ngrams.Merge(std::min(total - min_chains - subtract_for_numbering, ngrams.DefaultLazy()));
std::vector<uint64_t> count_bounds(1, types);
CreateChains(total - merge_using - subtract_for_numbering, count_bounds);
ngrams.Output(chains_.back(), merge_using);
}
// For initial probabilities, but this is generic.
void SortAndReadTwice(const std::vector<uint64_t> &counts, Sorts<ContextOrder> &sorts, util::stream::Chains &second, util::stream::ChainConfig second_config) {
bool unigrams_are_sorted = !config_.renumber_vocabulary;
// Do merge first before allocating chain memory.
for (std::size_t i = 0; i < config_.order - unigrams_are_sorted; ++i) {
sorts[i].Merge(0);
}
// There's no lazy merge, so just divide memory amongst the chains.
CreateChains(config_.TotalMemory(), counts);
chains_.back().ActivateProgress();
if (unigrams_are_sorted) {
chains_[0] >> unigrams_.Source();
second_config.entry_size = NGram<BuildingPayload>::TotalSize(1);
second.push_back(second_config);
second.back() >> unigrams_.Source();
}
for (std::size_t i = unigrams_are_sorted; i < config_.order; ++i) {
util::scoped_fd fd(sorts[i - unigrams_are_sorted].StealCompleted());
chains_[i].SetProgressTarget(util::SizeOrThrow(fd.get()));
chains_[i] >> util::stream::PRead(util::DupOrThrow(fd.get()), true);
second_config.entry_size = NGram<BuildingPayload>::TotalSize(i + 1);
second.push_back(second_config);
second.back() >> util::stream::PRead(fd.release(), true);
}
}
// There is no sort after this, so go for broke on lazy merging.
template <class Compare> void MaximumLazyInput(const std::vector<uint64_t> &counts, Sorts<Compare> &sorts) {
// Determine the minimum we can use for all the chains.
std::size_t min_chains = 0;
for (std::size_t i = 0; i < config_.order; ++i) {
min_chains += std::min(counts[i] * NGram<BuildingPayload>::TotalSize(i + 1), static_cast<uint64_t>(config_.minimum_block));
}
std::size_t for_merge = min_chains > config_.TotalMemory() ? 0 : (config_.TotalMemory() - min_chains);
std::vector<std::size_t> laziness;
// Prioritize longer n-grams.
for (util::stream::Sort<SuffixOrder> *i = sorts.end() - 1; i >= sorts.begin(); --i) {
laziness.push_back(i->Merge(for_merge));
assert(for_merge >= laziness.back());
for_merge -= laziness.back();
}
std::reverse(laziness.begin(), laziness.end());
CreateChains(for_merge + min_chains, counts);
chains_.back().ActivateProgress();
chains_[0] >> unigrams_.Source();
for (std::size_t i = 1; i < config_.order; ++i) {
sorts[i - 1].Output(chains_[i], laziness[i - 1]);
}
}
template <class Compare> void SetupSorts(Sorts<Compare> &sorts, bool exclude_unigrams) {
sorts.Init(config_.order - exclude_unigrams);
// Unigrams don't get sorted because their order is always the same.
if (exclude_unigrams) chains_[0] >> unigrams_.Sink() >> util::stream::kRecycle;
for (std::size_t i = exclude_unigrams; i < config_.order; ++i) {
sorts.push_back(chains_[i], config_.sort, Compare(i + 1));
}
chains_.Wait(true);
}
unsigned int Steps() const { return steps_; }
private:
// Create chains, allocating memory to them. Totally heuristic. Count
// bounds are upper bounds on the counts or not present.
void CreateChains(std::size_t remaining_mem, const std::vector<uint64_t> &count_bounds) {
std::vector<std::size_t> assignments;
assignments.reserve(config_.order);
// Start by assigning maximum memory usage (to be refined later).
for (std::size_t i = 0; i < count_bounds.size(); ++i) {
assignments.push_back(static_cast<std::size_t>(std::min(
static_cast<uint64_t>(remaining_mem),
count_bounds[i] * static_cast<uint64_t>(NGram<BuildingPayload>::TotalSize(i + 1)))));
}
assignments.resize(config_.order, remaining_mem);
// Now we know how much memory everybody wants. How much will they get?
// Proportional to this.
std::vector<float> portions;
// Indices of orders that have yet to be assigned.
std::vector<std::size_t> unassigned;
for (std::size_t i = 0; i < config_.order; ++i) {
portions.push_back(static_cast<float>((i+1) * NGram<BuildingPayload>::TotalSize(i+1)));
unassigned.push_back(i);
}
/*If somebody doesn't eat their full dinner, give it to the rest of the
* family. Then somebody else might not eat their full dinner etc. Ends
* when everybody unassigned is hungry.
*/
float sum;
bool found_more;
std::vector<std::size_t> block_count(config_.order);
do {
sum = 0.0;
for (std::size_t i = 0; i < unassigned.size(); ++i) {
sum += portions[unassigned[i]];
}
found_more = false;
// If the proportional assignment is more than needed, give it just what it needs.
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end();) {
if (assignments[*i] <= remaining_mem * (portions[*i] / sum)) {
remaining_mem -= assignments[*i];
block_count[*i] = 1;
i = unassigned.erase(i);
found_more = true;
} else {
++i;
}
}
} while (found_more);
for (std::vector<std::size_t>::iterator i = unassigned.begin(); i != unassigned.end(); ++i) {
assignments[*i] = remaining_mem * (portions[*i] / sum);
block_count[*i] = config_.block_count;
}
chains_.clear();
std::cerr << "Chain sizes:";
for (std::size_t i = 0; i < config_.order; ++i) {
// Always have enough for at least one record.
// This was crashing if e.g. there was no 5-gram.
assignments[i] = std::max(assignments[i], block_count[i] * NGram<BuildingPayload>::TotalSize(i + 1));
std::cerr << ' ' << (i+1) << ":" << assignments[i];
chains_.push_back(util::stream::ChainConfig(NGram<BuildingPayload>::TotalSize(i + 1), block_count[i], assignments[i]));
}
std::cerr << std::endl;
}
PipelineConfig &config_;
util::stream::Chains chains_;
util::stream::FileBuffer unigrams_;
const unsigned int steps_;
};
util::stream::Sort<SuffixOrder, CombineCounts> *CountText(int text_file /* input */, int vocab_file /* output */, Master &master, uint64_t &token_count, WordIndex &type_count, std::string &text_file_name, std::vector<bool> &prune_words) {
const PipelineConfig &config = master.Config();
std::cerr << "=== 1/" << master.Steps() << " Counting and sorting n-grams ===" << std::endl;
const std::size_t vocab_usage = CorpusCount::VocabUsage(config.vocab_estimate);
UTIL_THROW_IF(config.TotalMemory() < vocab_usage, util::Exception, "Vocab hash size estimate " << vocab_usage << " exceeds total memory " << config.TotalMemory());
std::size_t memory_for_chain =
// This much memory to work with after vocab hash table.
static_cast<float>(config.TotalMemory() - vocab_usage) /
// Solve for block size including the dedupe multiplier for one block.
(static_cast<float>(config.block_count) + CorpusCount::DedupeMultiplier(config.order)) *
// Chain likes memory expressed in terms of total memory.
static_cast<float>(config.block_count);
util::stream::Chain chain(util::stream::ChainConfig(NGram<BuildingPayload>::TotalSize(config.order), config.block_count, memory_for_chain));
type_count = config.vocab_estimate;
util::FilePiece text(text_file, NULL, &std::cerr);
text_file_name = text.FileName();
CorpusCount counter(text, vocab_file, true, token_count, type_count, prune_words, config.prune_vocab_file, chain.BlockSize() / chain.EntrySize(), config.disallowed_symbol_action);
chain >> boost::ref(counter);
util::scoped_ptr<util::stream::Sort<SuffixOrder, CombineCounts> > sorter(new util::stream::Sort<SuffixOrder, CombineCounts>(chain, config.sort, SuffixOrder(config.order), CombineCounts()));
chain.Wait(true);
return sorter.release();
}
void InitialProbabilities(const std::vector<uint64_t> &counts, const std::vector<uint64_t> &counts_pruned, const std::vector<Discount> &discounts, Master &master, Sorts<SuffixOrder> &primary, util::FixedArray<util::stream::FileBuffer> &gammas, const std::vector<uint64_t> &prune_thresholds, bool prune_vocab, const SpecialVocab &specials) {
const PipelineConfig &config = master.Config();
util::stream::Chains second(config.order);
{
Sorts<ContextOrder> sorts;
master.SetupSorts(sorts, !config.renumber_vocabulary);
PrintStatistics(counts, counts_pruned, discounts);
lm::ngram::ShowSizes(counts_pruned);
std::cerr << "=== 3/" << master.Steps() << " Calculating and sorting initial probabilities ===" << std::endl;
master.SortAndReadTwice(counts_pruned, sorts, second, config.initial_probs.adder_in);
}
util::stream::Chains gamma_chains(config.order);
InitialProbabilities(config.initial_probs, discounts, master.MutableChains(), second, gamma_chains, prune_thresholds, prune_vocab, specials);
// Don't care about gamma for 0.
gamma_chains[0] >> util::stream::kRecycle;
gammas.Init(config.order - 1);
for (std::size_t i = 1; i < config.order; ++i) {
gammas.push_back(util::MakeTemp(config.TempPrefix()));
gamma_chains[i] >> gammas[i - 1].Sink() >> util::stream::kRecycle;
}
// Has to be done here due to gamma_chains scope.
master.SetupSorts(primary, true);
}
void InterpolateProbabilities(const std::vector<uint64_t> &counts, Master &master, Sorts<SuffixOrder> &primary, util::FixedArray<util::stream::FileBuffer> &gammas, Output &output, const SpecialVocab &specials) {
std::cerr << "=== 4/" << master.Steps() << " Calculating and writing order-interpolated probabilities ===" << std::endl;
const PipelineConfig &config = master.Config();
master.MaximumLazyInput(counts, primary);
util::stream::Chains gamma_chains(config.order - 1);
for (std::size_t i = 0; i < config.order - 1; ++i) {
util::stream::ChainConfig read_backoffs(config.read_backoffs);
if(config.prune_vocab || config.prune_thresholds[i + 1] > 0)
read_backoffs.entry_size = sizeof(HashGamma);
else
read_backoffs.entry_size = sizeof(float);
gamma_chains.push_back(read_backoffs);
gamma_chains.back() >> gammas[i].Source(true);
}
master >> Interpolate(std::max(master.Config().vocab_size_for_unk, counts[0] - 1 /* <s> is not included */), util::stream::ChainPositions(gamma_chains), config.prune_thresholds, config.prune_vocab, config.output_q, specials);
gamma_chains >> util::stream::kRecycle;
output.SinkProbs(master.MutableChains());
}
class VocabNumbering {
public:
VocabNumbering(int final_vocab, StringPiece temp_prefix, bool renumber)
: final_vocab_(final_vocab),
renumber_(renumber),
specials_(kBOS, kEOS) {
if (renumber) {
temporary_.reset(util::MakeTemp(temp_prefix));
}
}
int WriteOnTheFly() const { return renumber_ ? temporary_.get() : final_vocab_; }
// Compute the vocabulary mapping and return the memory used.
std::size_t ComputeMapping(WordIndex type_count) {
if (!renumber_) return 0;
ngram::SortedVocabulary::ComputeRenumbering(type_count, temporary_.get(), final_vocab_, vocab_mapping_);
temporary_.reset();
return sizeof(WordIndex) * vocab_mapping_.size();
}
void ApplyRenumber(util::stream::Chains &chains) {
if (!renumber_) return;
for (std::size_t i = 0; i < chains.size(); ++i) {
chains[i] >> Renumber(&*vocab_mapping_.begin(), i + 1);
}
specials_ = SpecialVocab(vocab_mapping_[specials_.BOS()], vocab_mapping_[specials_.EOS()]);
}
const SpecialVocab &Specials() const { return specials_; }
private:
int final_vocab_;
// Out of order vocab file created on the fly.
util::scoped_fd temporary_;
bool renumber_;
std::vector<WordIndex> vocab_mapping_;
SpecialVocab specials_;
};
} // namespace
void Pipeline(PipelineConfig &config, int text_file, Output &output) {
// Some fail-fast sanity checks.
if (config.sort.buffer_size * 4 > config.TotalMemory()) {
config.sort.buffer_size = config.TotalMemory() / 4;
std::cerr << "Warning: changing sort block size to " << config.sort.buffer_size << " bytes due to low total memory." << std::endl;
}
if (config.minimum_block < NGram<BuildingPayload>::TotalSize(config.order)) {
config.minimum_block = NGram<BuildingPayload>::TotalSize(config.order);
std::cerr << "Warning: raising minimum block to " << config.minimum_block << " to fit an ngram in every block." << std::endl;
}
UTIL_THROW_IF(config.sort.buffer_size < config.minimum_block, util::Exception, "Sort block size " << config.sort.buffer_size << " is below the minimum block size " << config.minimum_block << ".");
UTIL_THROW_IF(config.TotalMemory() < config.minimum_block * config.order * config.block_count, util::Exception,
"Not enough memory to fit " << (config.order * config.block_count) << " blocks with minimum size " << config.minimum_block << ". Increase memory to " << (config.minimum_block * config.order * config.block_count) << " bytes or decrease the minimum block size.");
Master master(config, output.Steps());
// master's destructor will wait for chains. But they might be deadlocked if
// this thread dies because e.g. it ran out of memory.
try {
VocabNumbering numbering(output.VocabFile(), config.TempPrefix(), config.renumber_vocabulary);
uint64_t token_count;
WordIndex type_count;
std::string text_file_name;
std::vector<bool> prune_words;
util::scoped_ptr<util::stream::Sort<SuffixOrder, CombineCounts> > sorted_counts(
CountText(text_file, numbering.WriteOnTheFly(), master, token_count, type_count, text_file_name, prune_words));
std::cerr << "Unigram tokens " << token_count << " types " << type_count << std::endl;
// Create vocab mapping, which uses temporary memory, while nothing else is happening.
std::size_t subtract_for_numbering = numbering.ComputeMapping(type_count);
std::cerr << "=== 2/" << master.Steps() << " Calculating and sorting adjusted counts ===" << std::endl;
master.InitForAdjust(*sorted_counts, type_count, subtract_for_numbering);
sorted_counts.reset();
std::vector<uint64_t> counts;
std::vector<uint64_t> counts_pruned;
std::vector<Discount> discounts;
master >> AdjustCounts(config.prune_thresholds, counts, counts_pruned, prune_words, config.discount, discounts);
numbering.ApplyRenumber(master.MutableChains());
{
util::FixedArray<util::stream::FileBuffer> gammas;
Sorts<SuffixOrder> primary;
InitialProbabilities(counts, counts_pruned, discounts, master, primary, gammas, config.prune_thresholds, config.prune_vocab, numbering.Specials());
output.SetHeader(HeaderInfo(text_file_name, token_count, counts_pruned));
// Also does output.
InterpolateProbabilities(counts_pruned, master, primary, gammas, output, numbering.Specials());
}
} catch (const util::Exception &e) {
std::cerr << e.what() << std::endl;
abort();
}
}
}} // namespaces