marinone94's picture
Training in progress, epoch 0
1ce325b
#include "normalize.hh"
#include "../common/compare.hh"
#include "../common/ngram_stream.hh"
#include "backoff_matrix.hh"
#include "bounded_sequence_encoding.hh"
#include "interpolate_info.hh"
#include "merge_probabilities.hh"
#include "../weights.hh"
#include "../word_index.hh"
#include "../../util/fixed_array.hh"
#include "../../util/scoped.hh"
#include "../../util/stream/stream.hh"
#include "../../util/stream/rewindable_stream.hh"
#include <functional>
#include <queue>
#include <vector>
namespace lm { namespace interpolate {
namespace {
class BackoffQueueEntry {
public:
BackoffQueueEntry(float &entry, const util::stream::ChainPosition &position)
: entry_(entry), stream_(position) {
entry_ = 0.0;
}
operator bool() const { return stream_; }
NGramHeader operator*() const { return *stream_; }
const NGramHeader *operator->() const { return &*stream_; }
void Enter() {
entry_ = stream_->Value().backoff;
}
BackoffQueueEntry &Next() {
entry_ = 0.0;
++stream_;
return *this;
}
private:
float &entry_;
NGramStream<ProbBackoff> stream_;
};
struct PtrGreater : public std::binary_function<const BackoffQueueEntry *, const BackoffQueueEntry *, bool> {
bool operator()(const BackoffQueueEntry *first, const BackoffQueueEntry *second) const {
return SuffixLexicographicLess<NGramHeader>()(**second, **first);
}
};
class EntryOwner : public util::FixedArray<BackoffQueueEntry> {
public:
void push_back(float &entry, const util::stream::ChainPosition &position) {
new (end()) BackoffQueueEntry(entry, position);
Constructed();
}
};
std::size_t MaxOrder(const util::FixedArray<util::stream::ChainPositions> &model) {
std::size_t ret = 0;
for (const util::stream::ChainPositions *m = model.begin(); m != model.end(); ++m) {
ret = std::max(ret, m->size());
}
return ret;
}
class BackoffManager {
public:
explicit BackoffManager(const util::FixedArray<util::stream::ChainPositions> &models)
: entered_(MaxOrder(models)), matrix_(models.size(), MaxOrder(models)), skip_write_(MaxOrder(models)) {
std::size_t total = 0;
for (const util::stream::ChainPositions *m = models.begin(); m != models.end(); ++m) {
total += m->size();
}
for (std::size_t i = 0; i < MaxOrder(models); ++i) {
entered_.push_back(models.size());
}
owner_.Init(total);
for (const util::stream::ChainPositions *m = models.begin(); m != models.end(); ++m) {
for (const util::stream::ChainPosition *j = m->begin(); j != m->end(); ++j) {
owner_.push_back(matrix_.Backoff(m - models.begin(), j - m->begin()), *j);
if (owner_.back()) {
queue_.push(&owner_.back());
}
}
}
}
void SetupSkip(std::size_t order, util::stream::Stream &stream) {
skip_write_[order - 2] = &stream;
}
// Move up the backoffs for the given n-gram. The n-grams must be provided
// in suffix lexicographic order.
void Enter(const NGramHeader &to) {
// Check that we exited properly.
for (std::size_t i = to.Order() - 1; i < entered_.size(); ++i) {
assert(entered_[i].empty());
}
SuffixLexicographicLess<NGramHeader> less;
while (!queue_.empty() && less(**queue_.top(), to))
SkipRecord();
while (TopMatches(to)) {
BackoffQueueEntry *matches = queue_.top();
entered_[to.Order() - 1].push_back(matches);
matches->Enter();
queue_.pop();
}
}
void Exit(std::size_t order_minus_1) {
for (BackoffQueueEntry **i = entered_[order_minus_1].begin(); i != entered_[order_minus_1].end(); ++i) {
if ((*i)->Next())
queue_.push(*i);
}
entered_[order_minus_1].clear();
}
float Get(std::size_t model, std::size_t order_minus_1) const {
return matrix_.Backoff(model, order_minus_1);
}
void Finish() {
while (!queue_.empty())
SkipRecord();
}
private:
void SkipRecord() {
BackoffQueueEntry *top = queue_.top();
queue_.pop();
// Is this the last instance of the n-gram?
if (!TopMatches(**top)) {
// An n-gram is being skipped. Called once per skipped n-gram,
// regardless of how many models it comes from.
*reinterpret_cast<float*>(skip_write_[(*top)->Order() - 1]->Get()) = 0.0;
++*skip_write_[(*top)->Order() - 1];
}
if (top->Next())
queue_.push(top);
}
bool TopMatches(const NGramHeader &header) const {
return !queue_.empty() && (*queue_.top())->Order() == header.Order() && std::equal(header.begin(), header.end(), (*queue_.top())->begin());
}
EntryOwner owner_;
std::priority_queue<BackoffQueueEntry*, std::vector<BackoffQueueEntry*>, PtrGreater> queue_;
// Indexed by order then just all the matching models.
util::FixedArray<util::FixedArray<BackoffQueueEntry*> > entered_;
BackoffMatrix matrix_;
std::vector<util::stream::Stream*> skip_write_;
};
typedef long double Accum;
// Handles n-grams of the same order, using recursion to call another instance
// for higher orders.
class Recurse {
public:
Recurse(
const InterpolateInfo &info, // Must stay alive the entire time.
std::size_t order,
const util::stream::ChainPosition &merged_probs,
const util::stream::ChainPosition &prob_out,
const util::stream::ChainPosition &backoff_out,
BackoffManager &backoffs,
Recurse *higher) // higher is null for the highest order.
: order_(order),
encoding_(MakeEncoder(info, order)),
input_(merged_probs, PartialProbGamma(order, encoding_.EncodedLength())),
prob_out_(prob_out),
backoff_out_(backoff_out),
backoffs_(backoffs),
lambdas_(&*info.lambdas.begin()),
higher_(higher),
decoded_backoffs_(info.Models()),
extended_context_(order - 1) {
// This is only for bigrams and above. Summing unigrams is a much easier case.
assert(order >= 2);
}
// context = w_1^{n-1}
// z_lower = Z(w_2^{n-1})
// Input:
// Merged probabilities without backoff applied in input_.
// Backoffs via backoffs_.
// Calculates:
// Z(w_1^{n-1}): intermediate only.
// p_I(x | w_1^{n-1}) for all x: w_1^{n-1}x exists: Written to prob_out_.
// b_I(w_1^{n-1}): Written to backoff_out_.
void SameContext(const NGramHeader &context, Accum z_lower) {
assert(context.size() == order_ - 1);
backoffs_.Enter(context);
prob_out_.Mark();
// This is the backoff term that applies when one assumes everything backs off:
// \prod_i b_i(w_1^{n-1})^{\lambda_i}.
Accum backoff_once = 0.0;
for (std::size_t m = 0; m < decoded_backoffs_.size(); ++m) {
backoff_once += lambdas_[m] * backoffs_.Get(m, order_ - 2);
}
Accum z_delta = 0.0;
std::size_t count = 0;
for (; input_ && std::equal(context.begin(), context.end(), input_->begin()); ++input_, ++prob_out_, ++count) {
// Apply backoffs to probabilities.
// TODO: change bounded sequence encoding to have an iterator for decoding instead of doing a copy here.
encoding_.Decode(input_->FromBegin(), &*decoded_backoffs_.begin());
for (std::size_t m = 0; m < NumModels(); ++m) {
// Apply the backoffs as instructed for model m.
float accumulated = 0.0;
// Change backoffs for [order it backed off to, order - 1) except
// with 0-indexing. There is still the potential to charge backoff
// for order - 1, which is done later. The backoffs charged here
// are b_m(w_{n-1}^{n-1}) ... b_m(w_2^{n-1})
for (unsigned char backed_to = decoded_backoffs_[m]; backed_to < order_ - 2; ++backed_to) {
accumulated += backoffs_.Get(m, backed_to);
}
float lambda = lambdas_[m];
// Lower p(x | w_2^{n-1}) gets all the backoffs except the highest.
input_->LowerProb() += accumulated * lambda;
// Charge the backoff b(w_1^{n-1}) if applicable, but only to attain p(x | w_1^{n-1})
if (decoded_backoffs_[m] < order_ - 1) {
accumulated += backoffs_.Get(m, order_ - 2);
}
input_->Prob() += accumulated * lambda;
}
// TODO: better precision/less operations here.
z_delta += pow(10.0, input_->Prob()) - pow(10.0, input_->LowerProb() + backoff_once);
// Write unnormalized probability record.
std::copy(input_->begin(), input_->end(), reinterpret_cast<WordIndex*>(prob_out_.Get()));
ProbWrite() = input_->Prob();
}
// TODO numerical precision.
Accum z = log10(pow(10.0, z_lower + backoff_once) + z_delta);
// Normalize.
prob_out_.Rewind();
for (std::size_t i = 0; i < count; ++i, ++prob_out_) {
ProbWrite() -= z;
}
// This allows the stream to release data.
prob_out_.Mark();
// Output backoff.
*reinterpret_cast<float*>(backoff_out_.Get()) = z_lower + backoff_once - z;
++backoff_out_;
if (higher_.get())
higher_->ExtendContext(context, z);
backoffs_.Exit(order_ - 2);
}
// Call is given a context and z(context).
// Evaluates y context x for all y,x.
void ExtendContext(const NGramHeader &middle, Accum z_lower) {
assert(middle.size() == order_ - 2);
// Copy because the input will advance. TODO avoid this copy by sharing amongst classes.
std::copy(middle.begin(), middle.end(), extended_context_.begin() + 1);
while (input_ && std::equal(middle.begin(), middle.end(), input_->begin() + 1)) {
*extended_context_.begin() = *input_->begin();
SameContext(NGramHeader(&*extended_context_.begin(), order_ - 1), z_lower);
}
}
void Finish() {
assert(!input_);
prob_out_.Poison();
backoff_out_.Poison();
if (higher_.get())
higher_->Finish();
}
// The BackoffManager class also injects backoffs when it skips ahead e.g. b(</s>) = 1
util::stream::Stream &BackoffStream() { return backoff_out_; }
private:
// Write the probability to the correct place in prob_out_. Should use a proxy but currently incompatible with RewindableStream.
float &ProbWrite() {
return *reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(prob_out_.Get()) + order_ * sizeof(WordIndex));
}
std::size_t NumModels() const { return decoded_backoffs_.size(); }
const std::size_t order_;
const BoundedSequenceEncoding encoding_;
ProxyStream<PartialProbGamma> input_;
util::stream::RewindableStream prob_out_;
util::stream::Stream backoff_out_;
BackoffManager &backoffs_;
const float *const lambdas_;
// Higher order instance of this same class.
util::scoped_ptr<Recurse> higher_;
// Temporary in SameContext.
std::vector<unsigned char> decoded_backoffs_;
// Temporary in ExtendContext.
std::vector<WordIndex> extended_context_;
};
class Thread {
public:
Thread(const InterpolateInfo &info, util::FixedArray<util::stream::ChainPositions> &models_by_order, util::stream::Chains &prob_out, util::stream::Chains &backoff_out)
: info_(info), models_by_order_(models_by_order), prob_out_(prob_out), backoff_out_(backoff_out) {}
void Run(const util::stream::ChainPositions &merged_probabilities) {
// Unigrams do not have enocded backoff info.
ProxyStream<PartialProbGamma> in(merged_probabilities[0], PartialProbGamma(1, 0));
util::stream::RewindableStream prob_write(prob_out_[0]);
Accum z = 0.0;
prob_write.Mark();
WordIndex count = 0;
for (; in; ++in, ++prob_write, ++count) {
// Note assumption that probabilitity comes first
memcpy(prob_write.Get(), in.Get(), sizeof(WordIndex) + sizeof(float));
z += pow(10.0, in->Prob());
}
// TODO HACK TODO: lmplz outputs p(<s>) = 1 to get q to compute nicely. That will always result in 1.0 more than it should be.
z -= 1.0;
float log_z = log10(z);
prob_write.Rewind();
// Normalize unigram probabilities.
for (WordIndex i = 0; i < count; ++i, ++prob_write) {
*reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(prob_write.Get()) + sizeof(WordIndex)) -= log_z;
}
prob_write.Poison();
// Now setup the higher orders.
util::scoped_ptr<Recurse> higher_order;
BackoffManager backoffs(models_by_order_);
std::size_t max_order = merged_probabilities.size();
for (std::size_t order = max_order; order >= 2; --order) {
higher_order.reset(new Recurse(info_, order, merged_probabilities[order - 1], prob_out_[order - 1], backoff_out_[order - 2], backoffs, higher_order.release()));
backoffs.SetupSkip(order, higher_order->BackoffStream());
}
if (max_order > 1) {
higher_order->ExtendContext(NGramHeader(NULL, 0), log_z);
backoffs.Finish();
higher_order->Finish();
}
}
private:
const InterpolateInfo info_;
util::FixedArray<util::stream::ChainPositions> &models_by_order_;
util::stream::ChainPositions prob_out_;
util::stream::ChainPositions backoff_out_;
};
} // namespace
void Normalize(const InterpolateInfo &info, util::FixedArray<util::stream::ChainPositions> &models_by_order, util::stream::Chains &merged_probabilities, util::stream::Chains &prob_out, util::stream::Chains &backoff_out) {
assert(prob_out.size() == backoff_out.size() + 1);
// Arbitrarily put the thread on the merged_probabilities Chains.
merged_probabilities >> Thread(info, models_by_order, prob_out, backoff_out);
}
}} // namespaces