marinone94 commited on
Commit
0a1c33d
·
1 Parent(s): db1f503

split training in two, one per dataset

Browse files
Files changed (4) hide show
  1. old_run.sh +37 -0
  2. old_run_asr_ctc.py +911 -0
  3. run.sh +42 -6
  4. run_speech_recognition_ctc.py +79 -65
old_run.sh ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="mozilla-foundation/common_voice_8_0,marinone94/nst_sv" \
3
+ --model_name_or_path="KBLab/wav2vec2-large-voxrex" \
4
+ --dataset_config_name="sv-SE,distant_channel" \
5
+ --train_split_name="train+validation,train" \
6
+ --eval_split_name="test,None" \
7
+ --output_dir="./" \
8
+ --overwrite_output_dir \
9
+ --num_train_epochs="3" \
10
+ --per_device_train_batch_size="32" \
11
+ --per_device_eval_batch_size="32" \
12
+ --gradient_accumulation_steps="4" \
13
+ --learning_rate="7.5e-4" \
14
+ --warmup_ratio="0.0" \
15
+ --length_column_name="input_length" \
16
+ --evaluation_strategy="steps" \
17
+ --save_strategy="steps" \
18
+ --eval_steps="100" \
19
+ --save_steps="100" \
20
+ --text_column_name="sentence" \
21
+ --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
22
+ --logging_steps="20" \
23
+ --layerdrop="0.0" \
24
+ --activation_dropout="0.1" \
25
+ --save_total_limit="2" \
26
+ --freeze_feature_encoder \
27
+ --feat_proj_dropout="0.0" \
28
+ --mask_time_prob="0.75" \
29
+ --mask_time_length="10" \
30
+ --mask_feature_prob="0.25" \
31
+ --mask_feature_length="64" \
32
+ --gradient_checkpointing \
33
+ --use_auth_token \
34
+ --fp16 \
35
+ --group_by_length \
36
+ --do_train --do_eval \
37
+ --push_to_hub
old_run_asr_ctc.py ADDED
@@ -0,0 +1,911 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import datetime
19
+ import functools
20
+ import json
21
+ import logging
22
+ import os
23
+ import re
24
+ import sys
25
+ import warnings
26
+ from dataclasses import dataclass, field
27
+ from typing import Dict, List, Optional, Union
28
+
29
+ import datasets
30
+ import numpy as np
31
+ import pandas as pd
32
+ import torch
33
+ import wandb
34
+ from datasets import DatasetDict, concatenate_datasets, load_dataset, load_metric
35
+
36
+ import transformers
37
+ from transformers import (
38
+ AutoConfig,
39
+ AutoFeatureExtractor,
40
+ AutoModelForCTC,
41
+ AutoProcessor,
42
+ AutoTokenizer,
43
+ HfArgumentParser,
44
+ Trainer,
45
+ TrainingArguments,
46
+ Wav2Vec2Processor,
47
+ set_seed,
48
+ )
49
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
50
+ from transformers.utils import check_min_version
51
+ from transformers.utils.versions import require_version
52
+
53
+
54
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
55
+ check_min_version("4.16.0.dev0")
56
+
57
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
58
+
59
+
60
+ logger = logging.getLogger(__name__)
61
+
62
+
63
+ def list_field(default=None, metadata=None):
64
+ return field(default_factory=lambda: default, metadata=metadata)
65
+
66
+
67
+ @dataclass
68
+ class ModelArguments:
69
+ """
70
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
71
+ """
72
+
73
+ model_name_or_path: str = field(
74
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
75
+ )
76
+ tokenizer_name_or_path: Optional[str] = field(
77
+ default=None,
78
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
79
+ )
80
+ cache_dir: Optional[str] = field(
81
+ default=None,
82
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
83
+ )
84
+ freeze_feature_encoder: bool = field(
85
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
86
+ )
87
+ attention_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
89
+ )
90
+ activation_dropout: float = field(
91
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
92
+ )
93
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
94
+ hidden_dropout: float = field(
95
+ default=0.0,
96
+ metadata={
97
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
98
+ },
99
+ )
100
+ final_dropout: float = field(
101
+ default=0.0,
102
+ metadata={"help": "The dropout probability for the final projection layer."},
103
+ )
104
+ mask_time_prob: float = field(
105
+ default=0.05,
106
+ metadata={
107
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
108
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
109
+ "vectors will be masked along the time axis."
110
+ },
111
+ )
112
+ mask_time_length: int = field(
113
+ default=10,
114
+ metadata={"help": "Length of vector span to mask along the time axis."},
115
+ )
116
+ mask_feature_prob: float = field(
117
+ default=0.0,
118
+ metadata={
119
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
120
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
121
+ },
122
+ )
123
+ mask_feature_length: int = field(
124
+ default=10,
125
+ metadata={"help": "Length of vector span to mask along the feature axis."},
126
+ )
127
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
128
+ ctc_loss_reduction: Optional[str] = field(
129
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
130
+ )
131
+
132
+
133
+ @dataclass
134
+ class DataTrainingArguments:
135
+ """
136
+ Arguments pertaining to what data we are going to input our model for training and eval.
137
+
138
+ Using `HfArgumentParser` we can turn this class
139
+ into argparse arguments to be able to specify them on
140
+ the command line.
141
+ """
142
+
143
+ dataset_name: str = field(
144
+ metadata={
145
+ "help": "The name of the dataset to use (via the datasets library)."
146
+ " To use multiple datasets, specify them separated by a comma."
147
+ " e.g.: 'mozilla-foundation/common_voice_7_0,marinone94/nst_sv'"
148
+ }
149
+ )
150
+ dataset_config_name: str = field(
151
+ default=None, metadata={
152
+ "help": "The configuration name of the dataset to use (via the datasets library)."
153
+ " To use multiple datasets, specify them separated by a comma."
154
+ " e.g.: 'sv-SE,sv'"
155
+ }
156
+ )
157
+ train_split_name: str = field(
158
+ default="train+validation",
159
+ metadata={
160
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train+validation'"
161
+ " To use multiple datasets, specify them separated by a comma."
162
+ " e.g.: 'train+validation,all'"
163
+ },
164
+ )
165
+ eval_split_name: str = field(
166
+ default="test",
167
+ metadata={
168
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
169
+ " To use multiple datasets, specify them separated by a comma."
170
+ " e.g.: 'test,None'"
171
+ },
172
+ )
173
+ audio_column_name: str = field(
174
+ default="audio",
175
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
176
+ )
177
+ text_column_name: str = field(
178
+ default="text",
179
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
180
+ )
181
+ overwrite_cache: bool = field(
182
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
183
+ )
184
+ preprocessing_num_workers: Optional[int] = field(
185
+ default=None,
186
+ metadata={"help": "The number of processes to use for the preprocessing."},
187
+ )
188
+ max_train_samples: Optional[int] = field(
189
+ default=None,
190
+ metadata={
191
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
192
+ "value if set."
193
+ },
194
+ )
195
+ max_eval_samples: Optional[int] = field(
196
+ default=None,
197
+ metadata={
198
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
199
+ "value if set."
200
+ },
201
+ )
202
+ chars_to_ignore: Optional[List[str]] = list_field(
203
+ default=None,
204
+ metadata={"help": "A list of characters to remove from the transcripts."},
205
+ )
206
+ eval_metrics: List[str] = list_field(
207
+ default=["wer"],
208
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
209
+ )
210
+ max_duration_in_seconds: float = field(
211
+ default=20.0,
212
+ metadata={
213
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
214
+ },
215
+ )
216
+ min_duration_in_seconds: float = field(
217
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
218
+ )
219
+ preprocessing_only: bool = field(
220
+ default=False,
221
+ metadata={
222
+ "help": "Whether to only do data preprocessing and skip training. "
223
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
224
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
225
+ "so that the cached datasets can consequently be loaded in distributed training"
226
+ },
227
+ )
228
+ use_auth_token: bool = field(
229
+ default=False,
230
+ metadata={
231
+ "help": "If :obj:`True`, will use the token generated when running"
232
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
233
+ },
234
+ )
235
+ unk_token: str = field(
236
+ default="[UNK]",
237
+ metadata={"help": "The unk token for the tokenizer"},
238
+ )
239
+ pad_token: str = field(
240
+ default="[PAD]",
241
+ metadata={"help": "The padding token for the tokenizer"},
242
+ )
243
+ word_delimiter_token: str = field(
244
+ default="|",
245
+ metadata={"help": "The word delimiter token for the tokenizer"},
246
+ )
247
+ phoneme_language: Optional[str] = field(
248
+ default=None,
249
+ metadata={
250
+ "help": "The target language that should be used be"
251
+ " passed to the tokenizer for tokenization. Note that"
252
+ " this is only relevant if the model classifies the"
253
+ " input audio to a sequence of phoneme sequences."
254
+ },
255
+ )
256
+ dataset_seed: Optional[int] = field(
257
+ default=None,
258
+ metadata={"help": "Seed for shuffling training data"},
259
+ )
260
+
261
+
262
+ @dataclass
263
+ class DataCollatorCTCWithPadding:
264
+ """
265
+ Data collator that will dynamically pad the inputs received.
266
+ Args:
267
+ processor (:class:`~transformers.AutoProcessor`)
268
+ The processor used for proccessing the data.
269
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
270
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
271
+ among:
272
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
273
+ sequence if provided).
274
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
275
+ maximum acceptable input length for the model if that argument is not provided.
276
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
277
+ different lengths).
278
+ max_length (:obj:`int`, `optional`):
279
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
280
+ max_length_labels (:obj:`int`, `optional`):
281
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
282
+ pad_to_multiple_of (:obj:`int`, `optional`):
283
+ If set will pad the sequence to a multiple of the provided value.
284
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
285
+ 7.5 (Volta).
286
+ """
287
+
288
+ processor: AutoProcessor
289
+ padding: Union[bool, str] = "longest"
290
+ pad_to_multiple_of: Optional[int] = None
291
+ pad_to_multiple_of_labels: Optional[int] = None
292
+
293
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
294
+ # split inputs and labels since they have to be of different lenghts and need
295
+ # different padding methods
296
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
297
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
298
+
299
+ batch = self.processor.pad(
300
+ input_features,
301
+ padding=self.padding,
302
+ pad_to_multiple_of=self.pad_to_multiple_of,
303
+ return_tensors="pt",
304
+ )
305
+
306
+ with self.processor.as_target_processor():
307
+ labels_batch = self.processor.pad(
308
+ label_features,
309
+ padding=self.padding,
310
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
311
+ return_tensors="pt",
312
+ )
313
+
314
+ # replace padding with -100 to ignore loss correctly
315
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
316
+
317
+ batch["labels"] = labels
318
+
319
+ return batch
320
+
321
+
322
+ def create_vocabulary_from_data(
323
+ datasets: DatasetDict,
324
+ word_delimiter_token: Optional[str] = None,
325
+ unk_token: Optional[str] = None,
326
+ pad_token: Optional[str] = None,
327
+ ):
328
+ # Given training and test labels create vocabulary
329
+ def extract_all_chars(batch, vocab):
330
+ all_text = " ".join(batch)
331
+ return list(set(list(set(all_text)) + vocab))
332
+
333
+ batch_size = 10000
334
+ vocab = []
335
+ for i in range(0, datasets["train"].num_rows, 10000):
336
+ batch = datasets["train"].select(range(i, min(datasets["train"].num_rows, i+batch_size)))
337
+ vocab = extract_all_chars(batch["target_text"], vocab)
338
+ for i in range(0, datasets["eval"].num_rows, 10000):
339
+ batch = datasets["eval"].select(range(i, min(datasets["eval"].num_rows, i+batch_size)))
340
+ vocab = extract_all_chars(batch["target_text"], vocab)
341
+
342
+ vocab_dict = {v: k for k, v in enumerate(sorted(vocab))}
343
+
344
+ # replace white space with delimiter token
345
+ if word_delimiter_token is not None:
346
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
347
+ del vocab_dict[" "]
348
+
349
+ # add unk and pad token
350
+ if unk_token is not None:
351
+ vocab_dict[unk_token] = len(vocab_dict)
352
+
353
+ if pad_token is not None:
354
+ vocab_dict[pad_token] = len(vocab_dict)
355
+
356
+ return vocab_dict
357
+
358
+
359
+ def main():
360
+ # See all possible arguments in src/transformers/training_args.py
361
+ # or by passing the --help flag to this script.
362
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
363
+
364
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
365
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
366
+ # If we pass only one argument to the script and it's the path to a json file,
367
+ # let's parse it to get our arguments.
368
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
369
+ else:
370
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
371
+
372
+ # TODO: Replace with check of wandb env vars
373
+ try:
374
+ repo_name = os.getcwd().split("/")[-1]
375
+ run_name = f"{datetime.datetime.utcnow()}".replace(" ", "T")
376
+ os.environ["WANDB_PROJECT"] = repo_name
377
+ wandb.login()
378
+ training_args.report_to = ["wandb"]
379
+ training_args.run_name = run_name
380
+ # wandb.init()
381
+ except:
382
+ pass
383
+
384
+ # Detecting last checkpoint.
385
+ last_checkpoint = None
386
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
387
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
388
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
389
+ raise ValueError(
390
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
391
+ "Use --overwrite_output_dir to overcome."
392
+ )
393
+ elif last_checkpoint is not None:
394
+ logger.info(
395
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
396
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
397
+ )
398
+
399
+ # Setup logging
400
+ logging.basicConfig(
401
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
402
+ datefmt="%m/%d/%Y %H:%M:%S",
403
+ handlers=[logging.StreamHandler(sys.stdout)],
404
+ )
405
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
406
+
407
+ # Log on each process the small summary:
408
+ logger.warning(
409
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
410
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
411
+ )
412
+ # Set the verbosity to info of the Transformers logger (on main process only):
413
+ if is_main_process(training_args.local_rank):
414
+ transformers.utils.logging.set_verbosity_info()
415
+ logger.info("Training/evaluation parameters %s", training_args)
416
+
417
+ # Set seed before initializing model.
418
+ set_seed(training_args.seed)
419
+
420
+ # 1. First, let's load the dataset
421
+ raw_datasets = DatasetDict()
422
+
423
+ def common_cols(columns_a, columns_b):
424
+ col_a = set(columns_a)
425
+ col_b = set(columns_b)
426
+ return [col for col in col_a if col in col_b]
427
+
428
+ if training_args.do_train:
429
+
430
+ # Multiple datasets might need to be loaded from HF
431
+ # It assumes they all follow the common voice format
432
+ for (dataset_name, dataset_config_name, train_split_name) in zip(
433
+ data_args.dataset_name.split(","),
434
+ data_args.dataset_config_name.split(","),
435
+ data_args.train_split_name.split(","),
436
+ ):
437
+
438
+
439
+ if train_split_name != "None":
440
+ if "train" not in raw_datasets:
441
+ raw_datasets["train"] = load_dataset(
442
+ dataset_name,
443
+ dataset_config_name,
444
+ split=train_split_name,
445
+ use_auth_token=data_args.use_auth_token,
446
+ )
447
+ min_columns_train = raw_datasets["train"].column_names
448
+ dataset_sampling_rate = raw_datasets["train"].features[data_args.audio_column_name].sampling_rate
449
+ print(f"Dataset sampling rate: {dataset_sampling_rate}")
450
+ else:
451
+ new_dataset = DatasetDict()
452
+ new_dataset["train"] = load_dataset(
453
+ dataset_name,
454
+ dataset_config_name,
455
+ split=train_split_name,
456
+ use_auth_token=data_args.use_auth_token,
457
+ )
458
+ new_dataset_sampling_rate = next(iter(new_dataset.values())).features[data_args.audio_column_name].sampling_rate
459
+ if new_dataset_sampling_rate != dataset_sampling_rate:
460
+ print(f"New dataset sampling rate casted from {dataset_sampling_rate} to {dataset_sampling_rate}")
461
+ new_dataset["train"] = new_dataset["train"].cast_column(
462
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=dataset_sampling_rate)
463
+ )
464
+ raw_datasets["train"] = concatenate_datasets(
465
+ [
466
+ raw_datasets["train"],
467
+ new_dataset["train"]
468
+ ]
469
+ )
470
+ min_columns_train = common_cols(min_columns_train, new_dataset.column_names)
471
+ else:
472
+ logging.warning(f"{dataset_name} {dataset_config_name} train not loaded as split is {train_split_name}")
473
+
474
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
475
+ raise ValueError(
476
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
477
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
478
+ f"{', '.join(raw_datasets['train'].column_names)}."
479
+ )
480
+
481
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
482
+ raise ValueError(
483
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
484
+ "Make sure to set `--text_column_name` to the correct text column - one of "
485
+ f"{', '.join(raw_datasets['train'].column_names)}."
486
+ )
487
+
488
+ if data_args.max_train_samples is not None:
489
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
490
+ other_columns_train = [col for col in raw_datasets["train"].column_names if col not in min_columns_train]
491
+ raw_datasets["train"].remove_columns(other_columns_train)
492
+
493
+ # pd_train_head = raw_datasets["train"].select(range(10)).to_pandas()
494
+ # pd_train_tail = raw_datasets["train"].select(range(raw_datasets["train"].num_rows-10, raw_datasets["train"].num_rows)).to_pandas()
495
+ # pd_train = pd.concat([pd_train_head, pd_train_tail])
496
+ # print(pd_train["audio"])
497
+
498
+ if training_args.do_eval:
499
+ # Multiple datasets might need to be loaded from HF
500
+ # It assumes they all follow the common voice format
501
+ for (dataset_name, dataset_config_name, eval_split_name) in zip(
502
+ data_args.dataset_name.split(","),
503
+ data_args.dataset_config_name.split(","),
504
+ data_args.eval_split_name.split(","),
505
+ ):
506
+
507
+ if eval_split_name != "None":
508
+ if "eval" not in raw_datasets:
509
+ raw_datasets["eval"] = load_dataset(
510
+ dataset_name,
511
+ dataset_config_name,
512
+ split=eval_split_name,
513
+ use_auth_token=data_args.use_auth_token,
514
+ )
515
+ min_columns_eval = raw_datasets["eval"].column_names
516
+ dataset_sampling_rate = raw_datasets["eval"].features[data_args.audio_column_name].sampling_rate
517
+ print(f"Dataset sampling rate: {dataset_sampling_rate}")
518
+ else:
519
+ new_dataset = DatasetDict()
520
+ new_dataset["eval"] = load_dataset(
521
+ dataset_name,
522
+ dataset_config_name,
523
+ split=train_split_name,
524
+ use_auth_token=data_args.use_auth_token,
525
+ )
526
+ new_dataset_sampling_rate = new_dataset["eval"].features[data_args.audio_column_name].sampling_rate
527
+ if new_dataset_sampling_rate != dataset_sampling_rate:
528
+ print(f"New dataset sampling rate casted from {dataset_sampling_rate} to {dataset_sampling_rate}")
529
+ new_dataset["eval"] = new_dataset["eval"].cast_column(
530
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=dataset_sampling_rate)
531
+ )
532
+ raw_datasets["eval"] = concatenate_datasets(
533
+ [
534
+ raw_datasets["eval"],
535
+ new_dataset["eval"]
536
+ ]
537
+ )
538
+ min_columns_eval = common_cols(min_columns_eval, new_dataset.column_names)
539
+ else:
540
+ logging.warning(f"{dataset_name} {dataset_config_name} eval not loaded as split is {eval_split_name}")
541
+
542
+ if data_args.max_eval_samples is not None:
543
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
544
+ other_columns_eval = [col for col in raw_datasets["eval"].column_names if col not in min_columns_eval]
545
+ raw_datasets["eval"].remove_columns(other_columns_eval)
546
+
547
+ # pd_eval_head = raw_datasets["eval"].select(range(10)).to_pandas()
548
+ # pd_eval_tail = raw_datasets["eval"].select(range(raw_datasets["eval"].num_rows-10, raw_datasets["eval"].num_rows)).to_pandas()
549
+ # pd_eval = pd.concat([pd_eval_head, pd_eval_tail])
550
+ # print(pd_eval["audio"])
551
+
552
+ # 2. We remove some special characters from the datasets
553
+ # that make training complicated and do not help in transcribing the speech
554
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
555
+ # that could be easily picked up by the model
556
+ chars_to_ignore_regex = (
557
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
558
+ )
559
+ text_column_name = data_args.text_column_name
560
+
561
+ def is_text_valid(text):
562
+ for token in text.split():
563
+ if len(token) > 1:
564
+ return True
565
+ return False
566
+
567
+ def remove_special_characters(batch):
568
+ if chars_to_ignore_regex is not None:
569
+ batch["target_text"] = \
570
+ re.sub(chars_to_ignore_regex, "", batch[text_column_name]) \
571
+ .replace("\\\\Punkt", "") \
572
+ .replace("\\\\Komma", "") \
573
+ .replace("è", "e") \
574
+ .replace("é", "e") \
575
+ .replace("î", "i") \
576
+ .replace("ü", "u") \
577
+ .replace("ÿ", "y") \
578
+ .replace("ô", "o") \
579
+ .replace("\\", "") \
580
+ .replace("/", "") \
581
+ .replace("|", "") \
582
+ .lower() + " "
583
+ else:
584
+ batch["target_text"] = batch[text_column_name] \
585
+ .replace("\\\\Punkt", "") \
586
+ .replace("\\\\Komma", "") \
587
+ .replace("è", "e") \
588
+ .replace("é", "e") \
589
+ .replace("î", "i") \
590
+ .replace("ü", "u") \
591
+ .replace("ÿ", "y") \
592
+ .replace("ô", "o") \
593
+ .replace("\\", "") \
594
+ .replace("/", "") \
595
+ .replace("|", "") \
596
+ .lower() + " "
597
+ return batch
598
+
599
+ num_workers = data_args.preprocessing_num_workers
600
+ with training_args.main_process_first(desc="dataset map special characters removal"):
601
+ raw_datasets = raw_datasets.map(
602
+ remove_special_characters,
603
+ remove_columns=[text_column_name],
604
+ desc="remove special characters from datasets",
605
+ )
606
+
607
+ raw_datasets = raw_datasets.filter(
608
+ is_text_valid,
609
+ num_proc=num_workers,
610
+ input_columns=["target_text"],
611
+ desc="remove single words, single chars and 'W O R D S'",
612
+ )
613
+
614
+ # save special tokens for tokenizer
615
+ word_delimiter_token = data_args.word_delimiter_token
616
+ unk_token = data_args.unk_token
617
+ pad_token = data_args.pad_token
618
+
619
+ # 3. Next, let's load the config as we might need it to create
620
+ # the tokenizer
621
+ # load config
622
+ config = AutoConfig.from_pretrained(
623
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
624
+ )
625
+
626
+ # 4. Next, if no tokenizer file is defined,
627
+ # we create the vocabulary of the model by extracting all unique characters from
628
+ # the training and evaluation datasets
629
+ # We need to make sure that only first rank saves vocabulary
630
+ # make sure all processes wait until vocab is created
631
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
632
+ tokenizer_kwargs = {}
633
+ if tokenizer_name_or_path is None:
634
+ # save vocab in training output dir
635
+ tokenizer_name_or_path = training_args.output_dir
636
+
637
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
638
+
639
+ with training_args.main_process_first():
640
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
641
+ os.remove(vocab_file)
642
+
643
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
644
+ if not os.path.isfile(vocab_file):
645
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
646
+ vocab_dict = create_vocabulary_from_data(
647
+ raw_datasets,
648
+ word_delimiter_token=word_delimiter_token,
649
+ unk_token=unk_token,
650
+ pad_token=pad_token,
651
+ )
652
+
653
+ # save vocab dict to be loaded into tokenizer
654
+ with open(vocab_file, "w") as file:
655
+ json.dump(vocab_dict, file)
656
+
657
+ # if tokenizer has just been created
658
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
659
+ tokenizer_kwargs = {
660
+ "config": config if config.tokenizer_class is not None else None,
661
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
662
+ "unk_token": unk_token,
663
+ "pad_token": pad_token,
664
+ "word_delimiter_token": word_delimiter_token,
665
+ }
666
+
667
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
668
+ # Note for distributed training, the .from_pretrained methods guarantee that only
669
+ # one local process can concurrently download model & vocab.
670
+
671
+ # load feature_extractor and tokenizer
672
+ tokenizer = AutoTokenizer.from_pretrained(
673
+ tokenizer_name_or_path,
674
+ use_auth_token=data_args.use_auth_token,
675
+ **tokenizer_kwargs,
676
+ )
677
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
678
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
679
+ )
680
+
681
+ # adapt config
682
+ config.update(
683
+ {
684
+ "feat_proj_dropout": model_args.feat_proj_dropout,
685
+ "attention_dropout": model_args.attention_dropout,
686
+ "hidden_dropout": model_args.hidden_dropout,
687
+ "final_dropout": model_args.final_dropout,
688
+ "mask_time_prob": model_args.mask_time_prob,
689
+ "mask_time_length": model_args.mask_time_length,
690
+ "mask_feature_prob": model_args.mask_feature_prob,
691
+ "mask_feature_length": model_args.mask_feature_length,
692
+ "gradient_checkpointing": training_args.gradient_checkpointing,
693
+ "layerdrop": model_args.layerdrop,
694
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
695
+ "pad_token_id": tokenizer.pad_token_id,
696
+ "vocab_size": len(tokenizer),
697
+ "activation_dropout": model_args.activation_dropout,
698
+ }
699
+ )
700
+
701
+ # create model
702
+ model = AutoModelForCTC.from_pretrained(
703
+ model_args.model_name_or_path,
704
+ cache_dir=model_args.cache_dir,
705
+ config=config,
706
+ use_auth_token=data_args.use_auth_token,
707
+ )
708
+
709
+ # freeze encoder
710
+ if model_args.freeze_feature_encoder:
711
+ model.freeze_feature_encoder()
712
+
713
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
714
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
715
+ # so that we just need to set the correct target sampling rate and normalize the input
716
+ # via the `feature_extractor`
717
+
718
+ # make sure that dataset decodes audio with correct sampling rate
719
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
720
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
721
+ raw_datasets = raw_datasets.cast_column(
722
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
723
+ )
724
+
725
+ # derive max & min input length for sample rate & max duration
726
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
727
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
728
+ audio_column_name = data_args.audio_column_name
729
+
730
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
731
+ phoneme_language = data_args.phoneme_language
732
+
733
+ # Preprocessing the datasets.
734
+ # We need to read the audio files as arrays and tokenize the targets.
735
+ def prepare_dataset(batch):
736
+ # load audio
737
+ sample = batch[audio_column_name]
738
+
739
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
740
+ batch["input_values"] = inputs.input_values[0]
741
+ batch["input_length"] = len(batch["input_values"])
742
+
743
+ # encode targets
744
+ additional_kwargs = {}
745
+ if phoneme_language is not None:
746
+ additional_kwargs["phonemizer_lang"] = phoneme_language
747
+
748
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
749
+ return batch
750
+
751
+ with training_args.main_process_first(desc="dataset map preprocessing"):
752
+ vectorized_datasets = DatasetDict()
753
+ vectorized_datasets["train"] = raw_datasets["train"].map(
754
+ prepare_dataset,
755
+ remove_columns=raw_datasets["train"].column_names,
756
+ num_proc=num_workers,
757
+ desc="preprocess datasets",
758
+ )
759
+ vectorized_datasets["eval"] = raw_datasets["eval"].map(
760
+ prepare_dataset,
761
+ remove_columns=raw_datasets["eval"].column_names,
762
+ num_proc=num_workers,
763
+ desc="preprocess datasets",
764
+ )
765
+
766
+ def is_audio_in_length_range(length):
767
+ return length > min_input_length and length < max_input_length
768
+
769
+ # filter data that is shorter than min_input_length
770
+ vectorized_datasets = vectorized_datasets.filter(
771
+ is_audio_in_length_range,
772
+ num_proc=num_workers,
773
+ input_columns=["input_length"],
774
+ )
775
+
776
+ # 7. Next, we can prepare the training.
777
+ # Let's use word error rate (WER) as our evaluation metric,
778
+ # instantiate a data collator and the trainer
779
+
780
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
781
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
782
+
783
+ # If dataset_seed is set, shuffle train
784
+ if data_args.dataset_seed is not None:
785
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(seed=data_args.dataset_seed)
786
+
787
+ # TODO: Log sample of datasets in the right way (see wandb docs)
788
+ pd_train = vectorized_datasets["train"].select(range(10)).to_pandas()
789
+ pd_eval = vectorized_datasets["eval"].select(range(10)).to_pandas()
790
+ # wandb.log({"train_sample": pd_train})
791
+ # wandb.log({"eval_sample": pd_eval})
792
+
793
+ # for large datasets it is advised to run the preprocessing on a
794
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
795
+ # be a timeout when running the script in distributed mode.
796
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
797
+ # cached dataset
798
+ if data_args.preprocessing_only:
799
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
800
+ return
801
+
802
+ def compute_metrics(pred):
803
+ pred_logits = pred.predictions
804
+ pred_ids = np.argmax(pred_logits, axis=-1)
805
+
806
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
807
+
808
+ pred_str = tokenizer.batch_decode(pred_ids)
809
+ # we do not want to group tokens when computing the metrics
810
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
811
+
812
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
813
+
814
+ return metrics
815
+
816
+ # Now save everything to be able to create a single processor later
817
+ if is_main_process(training_args.local_rank):
818
+ # save feature extractor, tokenizer and config
819
+ feature_extractor.save_pretrained(training_args.output_dir)
820
+ tokenizer.save_pretrained(training_args.output_dir)
821
+ config.save_pretrained(training_args.output_dir)
822
+
823
+ try:
824
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
825
+ except (OSError, KeyError):
826
+ warnings.warn(
827
+ "Loading a processor from a feature extractor config that does not"
828
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
829
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
830
+ " `'processor_class': 'Wav2Vec2Processor'`",
831
+ FutureWarning,
832
+ )
833
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
834
+
835
+ # Instantiate custom data collator
836
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
837
+
838
+ # Initialize Trainer
839
+ trainer = Trainer(
840
+ model=model,
841
+ data_collator=data_collator,
842
+ args=training_args,
843
+ compute_metrics=compute_metrics,
844
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
845
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
846
+ tokenizer=feature_extractor,
847
+ )
848
+
849
+ # 8. Finally, we can start training
850
+
851
+ # Training
852
+ if training_args.do_train:
853
+
854
+ # use last checkpoint if exist
855
+ if last_checkpoint is not None:
856
+ checkpoint = last_checkpoint
857
+ elif os.path.isdir(model_args.model_name_or_path):
858
+ checkpoint = model_args.model_name_or_path
859
+ else:
860
+ checkpoint = None
861
+
862
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
863
+ trainer.save_model()
864
+
865
+ metrics = train_result.metrics
866
+ max_train_samples = (
867
+ data_args.max_train_samples
868
+ if data_args.max_train_samples is not None
869
+ else len(vectorized_datasets["train"])
870
+ )
871
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
872
+
873
+ trainer.log_metrics("train", metrics)
874
+ trainer.save_metrics("train", metrics)
875
+ trainer.save_state()
876
+
877
+ # Evaluation
878
+ results = {}
879
+ if training_args.do_eval:
880
+ logger.info("*** Evaluate ***")
881
+ metrics = trainer.evaluate()
882
+ max_eval_samples = (
883
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
884
+ )
885
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
886
+
887
+ trainer.log_metrics("eval", metrics)
888
+ trainer.save_metrics("eval", metrics)
889
+
890
+ # Write model card and (optionally) push to hub
891
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
892
+ kwargs = {
893
+ "finetuned_from": model_args.model_name_or_path,
894
+ "tasks": "speech-recognition",
895
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
896
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
897
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
898
+ }
899
+ if "common_voice" in data_args.dataset_name:
900
+ kwargs["language"] = config_name
901
+
902
+ if training_args.push_to_hub:
903
+ trainer.push_to_hub(**kwargs)
904
+ else:
905
+ trainer.create_model_card(**kwargs)
906
+
907
+ return results
908
+
909
+
910
+ if __name__ == "__main__":
911
+ main()
run.sh CHANGED
@@ -1,16 +1,16 @@
1
  python run_speech_recognition_ctc.py \
2
- --dataset_name="mozilla-foundation/common_voice_8_0,marinone94/nst_sv" \
3
  --model_name_or_path="KBLab/wav2vec2-large-voxrex" \
4
- --dataset_config_name="sv-SE,distant_channel" \
5
- --train_split_name="train+validation,train" \
6
- --eval_split_name="test,None" \
7
  --output_dir="./" \
8
  --overwrite_output_dir \
9
  --num_train_epochs="3" \
10
  --per_device_train_batch_size="32" \
11
  --per_device_eval_batch_size="32" \
12
  --gradient_accumulation_steps="4" \
13
- --learning_rate="7.5e-5" \
14
  --warmup_ratio="0.02" \
15
  --length_column_name="input_length" \
16
  --evaluation_strategy="steps" \
@@ -20,7 +20,43 @@ python run_speech_recognition_ctc.py \
20
  --text_column_name="sentence" \
21
  --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
22
  --logging_steps="20" \
23
- --dataset_seed="42" \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  --layerdrop="0.0" \
25
  --activation_dropout="0.1" \
26
  --save_total_limit="2" \
 
1
  python run_speech_recognition_ctc.py \
2
+ --dataset_name="marinone94/nst_sv" \
3
  --model_name_or_path="KBLab/wav2vec2-large-voxrex" \
4
+ --dataset_config_name="distant_channel" \
5
+ --train_split_name="train" \
6
+ --eval_split_name="test" \
7
  --output_dir="./" \
8
  --overwrite_output_dir \
9
  --num_train_epochs="3" \
10
  --per_device_train_batch_size="32" \
11
  --per_device_eval_batch_size="32" \
12
  --gradient_accumulation_steps="4" \
13
+ --learning_rate="7.5e-" \
14
  --warmup_ratio="0.02" \
15
  --length_column_name="input_length" \
16
  --evaluation_strategy="steps" \
 
20
  --text_column_name="sentence" \
21
  --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
22
  --logging_steps="20" \
23
+ --layerdrop="0.0" \
24
+ --activation_dropout="0.1" \
25
+ --save_total_limit="2" \
26
+ --freeze_feature_encoder \
27
+ --feat_proj_dropout="0.0" \
28
+ --mask_time_prob="0.75" \
29
+ --mask_time_length="10" \
30
+ --mask_feature_prob="0.25" \
31
+ --mask_feature_length="64" \
32
+ --gradient_checkpointing \
33
+ --use_auth_token \
34
+ --fp16 \
35
+ --group_by_length \
36
+ --do_train --do_eval \
37
+ --push_to_hub
38
+
39
+ python run_speech_recognition_ctc.py \
40
+ --dataset_name="mozilla-foundation/common_voice_8_0" \
41
+ --model_name_or_path="KBLab/wav2vec2-large-voxrex" \
42
+ --dataset_config_name="distant_channel" \
43
+ --train_split_name="train+validation" \
44
+ --eval_split_name="test" \
45
+ --output_dir="./" \
46
+ --num_train_epochs="50" \
47
+ --per_device_train_batch_size="32" \
48
+ --per_device_eval_batch_size="32" \
49
+ --gradient_accumulation_steps="4" \
50
+ --learning_rate="7.5e-5" \
51
+ --warmup_steps="2000" \
52
+ --length_column_name="input_length" \
53
+ --evaluation_strategy="steps" \
54
+ --save_strategy="steps" \
55
+ --eval_steps="500" \
56
+ --save_steps="500" \
57
+ --text_column_name="sentence" \
58
+ --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
59
+ --logging_steps="100" \
60
  --layerdrop="0.0" \
61
  --activation_dropout="0.1" \
62
  --save_total_limit="2" \
run_speech_recognition_ctc.py CHANGED
@@ -429,38 +429,45 @@ def main():
429
 
430
  # Multiple datasets might need to be loaded from HF
431
  # It assumes they all follow the common voice format
432
- for (dataset_name, dataset_config_name, train_split_name) in zip(
433
- data_args.dataset_name.split(","),
434
- data_args.dataset_config_name.split(","),
435
- data_args.train_split_name.split(","),
436
- ):
437
 
438
 
439
- if train_split_name != "None":
440
- if "train" not in raw_datasets:
441
- raw_datasets["train"] = load_dataset(
442
- dataset_name,
443
- dataset_config_name,
444
- split=train_split_name,
445
- use_auth_token=data_args.use_auth_token,
446
- )
447
- min_columns_train = raw_datasets["train"].column_names
448
- else:
449
- new_dataset = load_dataset(
450
- dataset_name,
451
- dataset_config_name,
452
- split=train_split_name,
453
- use_auth_token=data_args.use_auth_token,
454
- )
455
- raw_datasets["train"] = concatenate_datasets(
456
- [
457
- raw_datasets["train"],
458
- new_dataset
459
- ]
460
- )
461
- min_columns_train = common_cols(min_columns_train, new_dataset.column_names)
462
- else:
463
- logging.warning(f"{dataset_name} {dataset_config_name} train not loaded as split is {train_split_name}")
 
 
 
 
 
 
 
464
 
465
  if data_args.audio_column_name not in raw_datasets["train"].column_names:
466
  raise ValueError(
@@ -478,8 +485,8 @@ def main():
478
 
479
  if data_args.max_train_samples is not None:
480
  raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
481
- other_columns_train = [col for col in raw_datasets["train"].column_names if col not in min_columns_train]
482
- raw_datasets["train"].remove_columns(other_columns_train)
483
 
484
  # pd_train_head = raw_datasets["train"].select(range(10)).to_pandas()
485
  # pd_train_tail = raw_datasets["train"].select(range(raw_datasets["train"].num_rows-10, raw_datasets["train"].num_rows)).to_pandas()
@@ -489,42 +496,49 @@ def main():
489
  if training_args.do_eval:
490
  # Multiple datasets might need to be loaded from HF
491
  # It assumes they all follow the common voice format
492
- for (dataset_name, dataset_config_name, eval_split_name) in zip(
493
- data_args.dataset_name.split(","),
494
- data_args.dataset_config_name.split(","),
495
- data_args.eval_split_name.split(","),
496
- ):
497
-
498
- if eval_split_name != "None":
499
- if "eval" not in raw_datasets:
500
- raw_datasets["eval"] = load_dataset(
501
- dataset_name,
502
- dataset_config_name,
503
- split=eval_split_name,
504
- use_auth_token=data_args.use_auth_token,
505
- )
506
- min_columns_eval = raw_datasets["eval"].column_names
507
- else:
508
- new_dataset = load_dataset(
509
- dataset_name,
510
- dataset_config_name,
511
- split=eval_split_name,
512
- use_auth_token=data_args.use_auth_token,
513
- )
514
- raw_datasets["eval"] = concatenate_datasets(
515
- [
516
- raw_datasets["eval"],
517
- new_dataset
518
- ]
519
- )
520
- min_columns_eval = common_cols(min_columns_eval, new_dataset.column_names)
521
- else:
522
- logging.warning(f"{dataset_name} {dataset_config_name} eval not loaded as split is {eval_split_name}")
 
 
 
 
 
 
 
523
 
524
  if data_args.max_eval_samples is not None:
525
  raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
526
- other_columns_eval = [col for col in raw_datasets["eval"].column_names if col not in min_columns_eval]
527
- raw_datasets["eval"].remove_columns(other_columns_eval)
528
 
529
  # pd_eval_head = raw_datasets["eval"].select(range(10)).to_pandas()
530
  # pd_eval_tail = raw_datasets["eval"].select(range(raw_datasets["eval"].num_rows-10, raw_datasets["eval"].num_rows)).to_pandas()
 
429
 
430
  # Multiple datasets might need to be loaded from HF
431
  # It assumes they all follow the common voice format
432
+ # for (dataset_name, dataset_config_name, train_split_name) in zip(
433
+ # data_args.dataset_name.split(","),
434
+ # data_args.dataset_config_name.split(","),
435
+ # data_args.train_split_name.split(","),
436
+ # ):
437
 
438
 
439
+ # if train_split_name != "None":
440
+ # if "train" not in raw_datasets:
441
+ # raw_datasets["train"] = load_dataset(
442
+ # dataset_name,
443
+ # dataset_config_name,
444
+ # split=train_split_name,
445
+ # use_auth_token=data_args.use_auth_token,
446
+ # )
447
+ # min_columns_train = raw_datasets["train"].column_names
448
+ # else:
449
+ # new_dataset = load_dataset(
450
+ # dataset_name,
451
+ # dataset_config_name,
452
+ # split=train_split_name,
453
+ # use_auth_token=data_args.use_auth_token,
454
+ # )
455
+ # raw_datasets["train"] = concatenate_datasets(
456
+ # [
457
+ # raw_datasets["train"],
458
+ # new_dataset
459
+ # ]
460
+ # )
461
+ # min_columns_train = common_cols(min_columns_train, new_dataset.column_names)
462
+ # else:
463
+ # logging.warning(f"{dataset_name} {dataset_config_name} train not loaded as split is {train_split_name}")
464
+
465
+ raw_datasets["train"] = load_dataset(
466
+ data_args.dataset_name,
467
+ data_args.dataset_config_name,
468
+ split=data_args.train_split_name,
469
+ use_auth_token=data_args.use_auth_token,
470
+ )
471
 
472
  if data_args.audio_column_name not in raw_datasets["train"].column_names:
473
  raise ValueError(
 
485
 
486
  if data_args.max_train_samples is not None:
487
  raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
488
+ # other_columns_train = [col for col in raw_datasets["train"].column_names if col not in min_columns_train]
489
+ # raw_datasets["train"].remove_columns(other_columns_train)
490
 
491
  # pd_train_head = raw_datasets["train"].select(range(10)).to_pandas()
492
  # pd_train_tail = raw_datasets["train"].select(range(raw_datasets["train"].num_rows-10, raw_datasets["train"].num_rows)).to_pandas()
 
496
  if training_args.do_eval:
497
  # Multiple datasets might need to be loaded from HF
498
  # It assumes they all follow the common voice format
499
+ # for (dataset_name, dataset_config_name, eval_split_name) in zip(
500
+ # data_args.dataset_name.split(","),
501
+ # data_args.dataset_config_name.split(","),
502
+ # data_args.eval_split_name.split(","),
503
+ # ):
504
+
505
+ # if eval_split_name != "None":
506
+ # if "eval" not in raw_datasets:
507
+ # raw_datasets["eval"] = load_dataset(
508
+ # dataset_name,
509
+ # dataset_config_name,
510
+ # split=eval_split_name,
511
+ # use_auth_token=data_args.use_auth_token,
512
+ # )
513
+ # min_columns_eval = raw_datasets["eval"].column_names
514
+ # else:
515
+ # new_dataset = load_dataset(
516
+ # dataset_name,
517
+ # dataset_config_name,
518
+ # split=eval_split_name,
519
+ # use_auth_token=data_args.use_auth_token,
520
+ # )
521
+ # raw_datasets["eval"] = concatenate_datasets(
522
+ # [
523
+ # raw_datasets["eval"],
524
+ # new_dataset
525
+ # ]
526
+ # )
527
+ # min_columns_eval = common_cols(min_columns_eval, new_dataset.column_names)
528
+ # else:
529
+ # logging.warning(f"{dataset_name} {dataset_config_name} eval not loaded as split is {eval_split_name}")
530
+
531
+ raw_datasets["eval"] = load_dataset(
532
+ data_args.dataset_name,
533
+ data_args.dataset_config_name,
534
+ split=data_args.eval_split_name,
535
+ use_auth_token=data_args.use_auth_token,
536
+ )
537
 
538
  if data_args.max_eval_samples is not None:
539
  raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
540
+ # other_columns_eval = [col for col in raw_datasets["eval"].column_names if col not in min_columns_eval]
541
+ # raw_datasets["eval"].remove_columns(other_columns_eval)
542
 
543
  # pd_eval_head = raw_datasets["eval"].select(range(10)).to_pandas()
544
  # pd_eval_tail = raw_datasets["eval"].select(range(raw_datasets["eval"].num_rows-10, raw_datasets["eval"].num_rows)).to_pandas()