marinone94 commited on
Commit
3870354
·
1 Parent(s): 7d30caa

add more debugging, shuffle dataset max train

Browse files
join_datasets_asr_ctc.py CHANGED
@@ -479,6 +479,11 @@ def load_raw_datasets(training_args, data_args):
479
  f"{', '.join(raw_datasets['train'].column_names)}."
480
  )
481
 
 
 
 
 
 
482
  if data_args.max_train_samples is not None:
483
  raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
484
  other_columns_train = [col for col in raw_datasets["train"].column_names if col not in min_columns_train]
@@ -771,10 +776,6 @@ def preprocess_audio_datasets(raw_datasets, tokenizer, feature_extractor, traini
771
  input_columns=["input_length"],
772
  )
773
 
774
- # If dataset_seed is set, shuffle train
775
- if data_args.dataset_seed is not None:
776
- vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(seed=data_args.dataset_seed)
777
-
778
  # TODO: Log sample of datasets in the right way (see wandb docs)
779
  pd_train = vectorized_datasets["train"].select(range(10)).to_pandas()
780
  pd_eval = vectorized_datasets["eval"].select(range(10)).to_pandas()
@@ -872,6 +873,21 @@ def main():
872
  data_args=data_args
873
  )
874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875
  # 7. Next, we can prepare the training.
876
  # Let's use word error rate (WER) as our evaluation metric,
877
  # instantiate a data collator and the trainer
 
479
  f"{', '.join(raw_datasets['train'].column_names)}."
480
  )
481
 
482
+ # If dataset_seed is set, shuffle train
483
+ if data_args.dataset_seed is not None:
484
+ raw_datasets["train"] = raw_datasets["train"].shuffle(seed=data_args.dataset_seed)
485
+
486
+
487
  if data_args.max_train_samples is not None:
488
  raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
489
  other_columns_train = [col for col in raw_datasets["train"].column_names if col not in min_columns_train]
 
776
  input_columns=["input_length"],
777
  )
778
 
 
 
 
 
779
  # TODO: Log sample of datasets in the right way (see wandb docs)
780
  pd_train = vectorized_datasets["train"].select(range(10)).to_pandas()
781
  pd_eval = vectorized_datasets["eval"].select(range(10)).to_pandas()
 
873
  data_args=data_args
874
  )
875
 
876
+ # Inspect datasets
877
+ logger.info("Inspect datasets")
878
+ avg = []
879
+ std = []
880
+ import numpy as np
881
+ for input_ in vectorized_datasets["train"][:10]["input_values"]:
882
+ avg.append(np.average(input_))
883
+ std.append(np.std(input_))
884
+ for input_ in vectorized_datasets["eval"][:10]["input_values"]:
885
+ avg.append(np.average(input_))
886
+ std.append(np.std(input_))
887
+
888
+ logger.info(f"Average values: {avg}")
889
+ logger.info(f"Std values: {std}")
890
+
891
  # 7. Next, we can prepare the training.
892
  # Let's use word error rate (WER) as our evaluation metric,
893
  # instantiate a data collator and the trainer
join_datasets_asr_ctc_run.sh CHANGED
@@ -30,6 +30,7 @@ python join_datasets_asr_ctc.py \
30
  --mask_time_length="10" \
31
  --mask_feature_prob="0.25" \
32
  --mask_feature_length="64" \
 
33
  --gradient_checkpointing \
34
  --use_auth_token \
35
  --preprocessing_only \
 
30
  --mask_time_length="10" \
31
  --mask_feature_prob="0.25" \
32
  --mask_feature_length="64" \
33
+ --dataset_seed="42" \
34
  --gradient_checkpointing \
35
  --use_auth_token \
36
  --preprocessing_only \
vocab.json CHANGED
@@ -1 +1 @@
1
- {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "ä": 27, "å": 28, "ö": 29, "|": 0, "[UNK]": 30, "[PAD]": 31}
 
1
+ {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "\u00e4": 27, "\u00e5": 28, "\u00f6": 29, "|": 0, "[UNK]": 30, "[PAD]": 31}