marinone94
commited on
Merge branch 'main' of https://huggingface.co/marinone94/xls-r-300m-sv-robust
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .ipynb_checkpoints/added_tokens-checkpoint.json +0 -1
- .ipynb_checkpoints/all_results-checkpoint.json +11 -5
- .ipynb_checkpoints/eval_results-checkpoint.json +9 -0
- .ipynb_checkpoints/run-checkpoint.sh +1 -1
- .ipynb_checkpoints/run-dummy-ab-gpu-checkpoint.sh +22 -0
- .ipynb_checkpoints/run-dummy-sv-gpu-checkpoint.sh +0 -34
- .ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py +737 -0
- .ipynb_checkpoints/special_tokens_map-checkpoint.json +0 -1
- .ipynb_checkpoints/tokenizer_config-checkpoint.json +0 -1
- .ipynb_checkpoints/train_results-checkpoint.json +0 -8
- .ipynb_checkpoints/trainer_state-checkpoint.json +0 -103
- README.md +40 -8
- all_results.json +10 -10
- checkpoint-10/trainer_state.json +0 -94
- {checkpoint-5 → checkpoint-1000}/config.json +1 -1
- {checkpoint-10 → checkpoint-1000}/optimizer.pt +2 -2
- {checkpoint-10 → checkpoint-1000}/preprocessor_config.json +0 -0
- {checkpoint-5 → checkpoint-1000}/pytorch_model.bin +1 -1
- {checkpoint-5 → checkpoint-1000}/rng_state.pth +2 -2
- {checkpoint-5 → checkpoint-1000}/scaler.pt +1 -1
- {checkpoint-10 → checkpoint-1000}/scheduler.pt +1 -1
- checkpoint-1000/trainer_state.json +94 -0
- {checkpoint-5 → checkpoint-1000}/training_args.bin +1 -1
- {checkpoint-10 → checkpoint-1500}/config.json +1 -1
- {checkpoint-5 → checkpoint-1500}/optimizer.pt +2 -2
- {checkpoint-5 → checkpoint-1500}/preprocessor_config.json +0 -0
- {checkpoint-10 → checkpoint-1500}/pytorch_model.bin +1 -1
- {checkpoint-10 → checkpoint-1500}/rng_state.pth +2 -2
- {checkpoint-10 → checkpoint-1500}/scaler.pt +1 -1
- {checkpoint-5 → checkpoint-1500}/scheduler.pt +1 -1
- checkpoint-1500/trainer_state.json +133 -0
- {checkpoint-10 → checkpoint-1500}/training_args.bin +1 -1
- checkpoint-5/trainer_state.json +0 -55
- checkpoint-500/.ipynb_checkpoints/trainer_state-checkpoint.json +55 -0
- .ipynb_checkpoints/config-checkpoint.json → checkpoint-500/config.json +1 -1
- checkpoint-500/optimizer.pt +3 -0
- .ipynb_checkpoints/preprocessor_config-checkpoint.json → checkpoint-500/preprocessor_config.json +0 -0
- checkpoint-500/pytorch_model.bin +3 -0
- checkpoint-500/rng_state.pth +3 -0
- checkpoint-500/scaler.pt +3 -0
- checkpoint-500/scheduler.pt +3 -0
- checkpoint-500/trainer_state.json +55 -0
- checkpoint-500/training_args.bin +3 -0
- config.json +1 -1
- eval_results.json +6 -6
- pytorch_model.bin +1 -1
- run-dummy-ab-gpu.sh +22 -0
- run-dummy-sv-gpu.sh +0 -34
- run.sh +1 -1
- special_tokens_map.json +1 -1
.ipynb_checkpoints/added_tokens-checkpoint.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"<s>": 35, "</s>": 36}
|
|
|
|
.ipynb_checkpoints/all_results-checkpoint.json
CHANGED
@@ -1,8 +1,14 @@
|
|
1 |
{
|
2 |
-
"epoch": 0
|
3 |
-
"
|
4 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"train_samples": 11030,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.31790396571159363,
|
4 |
+
"eval_runtime": 136.0793,
|
5 |
+
"eval_samples": 4620,
|
6 |
+
"eval_samples_per_second": 33.951,
|
7 |
+
"eval_steps_per_second": 4.248,
|
8 |
+
"eval_wer": 0.2734810010402007,
|
9 |
+
"train_loss": 1.4555730460410894,
|
10 |
+
"train_runtime": 29339.4334,
|
11 |
"train_samples": 11030,
|
12 |
+
"train_samples_per_second": 18.797,
|
13 |
+
"train_steps_per_second": 0.586
|
14 |
}
|
.ipynb_checkpoints/eval_results-checkpoint.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.31790396571159363,
|
4 |
+
"eval_runtime": 136.0793,
|
5 |
+
"eval_samples": 4620,
|
6 |
+
"eval_samples_per_second": 33.951,
|
7 |
+
"eval_steps_per_second": 4.248,
|
8 |
+
"eval_wer": 0.2734810010402007
|
9 |
+
}
|
.ipynb_checkpoints/run-checkpoint.sh
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
python run_speech_recognition_ctc.py \
|
2 |
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
-
--model_name_or_path="
|
4 |
--dataset_config_name="sv-SE" \
|
5 |
--output_dir="./" \
|
6 |
--overwrite_output_dir \
|
|
|
1 |
python run_speech_recognition_ctc.py \
|
2 |
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
+
--model_name_or_path="marinone94/xls-r-300m-sv-robust" \
|
4 |
--dataset_config_name="sv-SE" \
|
5 |
--output_dir="./" \
|
6 |
--overwrite_output_dir \
|
.ipynb_checkpoints/run-dummy-ab-gpu-checkpoint.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
+
--model_name_or_path="hf-test/xls-r-dummy" \
|
4 |
+
--dataset_config_name="ab" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--max_steps="10" \
|
8 |
+
--per_device_train_batch_size="2" \
|
9 |
+
--learning_rate="3e-4" \
|
10 |
+
--save_total_limit="1" \
|
11 |
+
--evaluation_strategy="steps" \
|
12 |
+
--text_column_name="sentence" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--save_steps="5" \
|
15 |
+
--layerdrop="0.0" \
|
16 |
+
--freeze_feature_encoder \
|
17 |
+
--gradient_checkpointing \
|
18 |
+
--fp16 \
|
19 |
+
--group_by_length \
|
20 |
+
--push_to_hub \
|
21 |
+
--use_auth_token \
|
22 |
+
--do_train --do_eval
|
.ipynb_checkpoints/run-dummy-sv-gpu-checkpoint.sh
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
python run_speech_recognition_ctc.py \
|
2 |
-
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
-
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
4 |
-
--dataset_config_name="sv-SE" \
|
5 |
-
--output_dir="./" \
|
6 |
-
--overwrite_output_dir \
|
7 |
-
--max_steps="10" \
|
8 |
-
--per_device_train_batch_size="8" \
|
9 |
-
--per_device_eval_batch_size="8" \
|
10 |
-
--gradient_accumulation_steps="4" \
|
11 |
-
--learning_rate="7.5e-3" \
|
12 |
-
--warmup_steps="2000" \
|
13 |
-
--length_column_name="input_length" \
|
14 |
-
--evaluation_strategy="steps" \
|
15 |
-
--text_column_name="sentence" \
|
16 |
-
--chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
|
17 |
-
--save_steps="5" \
|
18 |
-
--eval_steps="5" \
|
19 |
-
--logging_steps="1" \
|
20 |
-
--layerdrop="0.0" \
|
21 |
-
--activation_dropout="0.1" \
|
22 |
-
--save_total_limit="3" \
|
23 |
-
--freeze_feature_encoder \
|
24 |
-
--feat_proj_dropout="0.0" \
|
25 |
-
--mask_time_prob="0.75" \
|
26 |
-
--mask_time_length="10" \
|
27 |
-
--mask_feature_prob="0.25" \
|
28 |
-
--mask_feature_length="64" \
|
29 |
-
--gradient_checkpointing \
|
30 |
-
--use_auth_token \
|
31 |
-
--fp16 \
|
32 |
-
--group_by_length \
|
33 |
-
--do_train --do_eval \
|
34 |
-
--push_to_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.16.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
106 |
+
"vectors will be masked along the time axis."
|
107 |
+
},
|
108 |
+
)
|
109 |
+
mask_time_length: int = field(
|
110 |
+
default=10,
|
111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
112 |
+
)
|
113 |
+
mask_feature_prob: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={
|
116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
mask_feature_length: int = field(
|
121 |
+
default=10,
|
122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
123 |
+
)
|
124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
125 |
+
ctc_loss_reduction: Optional[str] = field(
|
126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class DataTrainingArguments:
|
132 |
+
"""
|
133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
134 |
+
|
135 |
+
Using `HfArgumentParser` we can turn this class
|
136 |
+
into argparse arguments to be able to specify them on
|
137 |
+
the command line.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataset_name: str = field(
|
141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
142 |
+
)
|
143 |
+
dataset_config_name: str = field(
|
144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
145 |
+
)
|
146 |
+
train_split_name: str = field(
|
147 |
+
default="train+validation",
|
148 |
+
metadata={
|
149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
150 |
+
},
|
151 |
+
)
|
152 |
+
eval_split_name: str = field(
|
153 |
+
default="test",
|
154 |
+
metadata={
|
155 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
overwrite_cache: bool = field(
|
167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
168 |
+
)
|
169 |
+
preprocessing_num_workers: Optional[int] = field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
172 |
+
)
|
173 |
+
max_train_samples: Optional[int] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
177 |
+
"value if set."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
max_eval_samples: Optional[int] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
184 |
+
"value if set."
|
185 |
+
},
|
186 |
+
)
|
187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
188 |
+
default=None,
|
189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
190 |
+
)
|
191 |
+
eval_metrics: List[str] = list_field(
|
192 |
+
default=["wer"],
|
193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
194 |
+
)
|
195 |
+
max_duration_in_seconds: float = field(
|
196 |
+
default=20.0,
|
197 |
+
metadata={
|
198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
199 |
+
},
|
200 |
+
)
|
201 |
+
min_duration_in_seconds: float = field(
|
202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
203 |
+
)
|
204 |
+
preprocessing_only: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={
|
207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
211 |
+
},
|
212 |
+
)
|
213 |
+
use_auth_token: bool = field(
|
214 |
+
default=False,
|
215 |
+
metadata={
|
216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
unk_token: str = field(
|
221 |
+
default="[UNK]",
|
222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
223 |
+
)
|
224 |
+
pad_token: str = field(
|
225 |
+
default="[PAD]",
|
226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
227 |
+
)
|
228 |
+
word_delimiter_token: str = field(
|
229 |
+
default="|",
|
230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
231 |
+
)
|
232 |
+
phoneme_language: Optional[str] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": "The target language that should be used be"
|
236 |
+
" passed to the tokenizer for tokenization. Note that"
|
237 |
+
" this is only relevant if the model classifies the"
|
238 |
+
" input audio to a sequence of phoneme sequences."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataCollatorCTCWithPadding:
|
245 |
+
"""
|
246 |
+
Data collator that will dynamically pad the inputs received.
|
247 |
+
Args:
|
248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
249 |
+
The processor used for proccessing the data.
|
250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
252 |
+
among:
|
253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
254 |
+
sequence if provided).
|
255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
258 |
+
different lengths).
|
259 |
+
max_length (:obj:`int`, `optional`):
|
260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
261 |
+
max_length_labels (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
264 |
+
If set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
266 |
+
7.5 (Volta).
|
267 |
+
"""
|
268 |
+
|
269 |
+
processor: AutoProcessor
|
270 |
+
padding: Union[bool, str] = "longest"
|
271 |
+
pad_to_multiple_of: Optional[int] = None
|
272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
279 |
+
|
280 |
+
batch = self.processor.pad(
|
281 |
+
input_features,
|
282 |
+
padding=self.padding,
|
283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
284 |
+
return_tensors="pt",
|
285 |
+
)
|
286 |
+
|
287 |
+
with self.processor.as_target_processor():
|
288 |
+
labels_batch = self.processor.pad(
|
289 |
+
label_features,
|
290 |
+
padding=self.padding,
|
291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
|
295 |
+
# replace padding with -100 to ignore loss correctly
|
296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
297 |
+
|
298 |
+
batch["labels"] = labels
|
299 |
+
|
300 |
+
return batch
|
301 |
+
|
302 |
+
|
303 |
+
def create_vocabulary_from_data(
|
304 |
+
datasets: DatasetDict,
|
305 |
+
word_delimiter_token: Optional[str] = None,
|
306 |
+
unk_token: Optional[str] = None,
|
307 |
+
pad_token: Optional[str] = None,
|
308 |
+
):
|
309 |
+
# Given training and test labels create vocabulary
|
310 |
+
def extract_all_chars(batch):
|
311 |
+
all_text = " ".join(batch["target_text"])
|
312 |
+
vocab = list(set(all_text))
|
313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
314 |
+
|
315 |
+
vocabs = datasets.map(
|
316 |
+
extract_all_chars,
|
317 |
+
batched=True,
|
318 |
+
batch_size=-1,
|
319 |
+
keep_in_memory=True,
|
320 |
+
remove_columns=datasets["train"].column_names,
|
321 |
+
)
|
322 |
+
|
323 |
+
# take union of all unique characters in each dataset
|
324 |
+
vocab_set = functools.reduce(
|
325 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
326 |
+
)
|
327 |
+
|
328 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
329 |
+
|
330 |
+
# replace white space with delimiter token
|
331 |
+
if word_delimiter_token is not None:
|
332 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
333 |
+
del vocab_dict[" "]
|
334 |
+
|
335 |
+
# add unk and pad token
|
336 |
+
if unk_token is not None:
|
337 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
338 |
+
|
339 |
+
if pad_token is not None:
|
340 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
341 |
+
|
342 |
+
return vocab_dict
|
343 |
+
|
344 |
+
|
345 |
+
def main():
|
346 |
+
# See all possible arguments in src/transformers/training_args.py
|
347 |
+
# or by passing the --help flag to this script.
|
348 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
349 |
+
|
350 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
351 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
352 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
353 |
+
# let's parse it to get our arguments.
|
354 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
355 |
+
else:
|
356 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
357 |
+
|
358 |
+
# Detecting last checkpoint.
|
359 |
+
last_checkpoint = None
|
360 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
361 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
362 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
363 |
+
raise ValueError(
|
364 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
365 |
+
"Use --overwrite_output_dir to overcome."
|
366 |
+
)
|
367 |
+
elif last_checkpoint is not None:
|
368 |
+
logger.info(
|
369 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
370 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
371 |
+
)
|
372 |
+
|
373 |
+
# Setup logging
|
374 |
+
logging.basicConfig(
|
375 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
376 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
377 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
378 |
+
)
|
379 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
380 |
+
|
381 |
+
# Log on each process the small summary:
|
382 |
+
logger.warning(
|
383 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
384 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
385 |
+
)
|
386 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
387 |
+
if is_main_process(training_args.local_rank):
|
388 |
+
transformers.utils.logging.set_verbosity_info()
|
389 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
390 |
+
|
391 |
+
# Set seed before initializing model.
|
392 |
+
set_seed(training_args.seed)
|
393 |
+
|
394 |
+
# 1. First, let's load the dataset
|
395 |
+
raw_datasets = DatasetDict()
|
396 |
+
|
397 |
+
if training_args.do_train:
|
398 |
+
raw_datasets["train"] = load_dataset(
|
399 |
+
data_args.dataset_name,
|
400 |
+
data_args.dataset_config_name,
|
401 |
+
split=data_args.train_split_name,
|
402 |
+
use_auth_token=data_args.use_auth_token,
|
403 |
+
)
|
404 |
+
|
405 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
406 |
+
raise ValueError(
|
407 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
408 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
409 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
410 |
+
)
|
411 |
+
|
412 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
413 |
+
raise ValueError(
|
414 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
415 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
416 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
417 |
+
)
|
418 |
+
|
419 |
+
if data_args.max_train_samples is not None:
|
420 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
421 |
+
|
422 |
+
if training_args.do_eval:
|
423 |
+
raw_datasets["eval"] = load_dataset(
|
424 |
+
data_args.dataset_name,
|
425 |
+
data_args.dataset_config_name,
|
426 |
+
split=data_args.eval_split_name,
|
427 |
+
use_auth_token=data_args.use_auth_token,
|
428 |
+
)
|
429 |
+
|
430 |
+
if data_args.max_eval_samples is not None:
|
431 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
432 |
+
|
433 |
+
# 2. We remove some special characters from the datasets
|
434 |
+
# that make training complicated and do not help in transcribing the speech
|
435 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
436 |
+
# that could be easily picked up by the model
|
437 |
+
chars_to_ignore_regex = (
|
438 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
439 |
+
)
|
440 |
+
text_column_name = data_args.text_column_name
|
441 |
+
|
442 |
+
def remove_special_characters(batch):
|
443 |
+
if chars_to_ignore_regex is not None:
|
444 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
445 |
+
else:
|
446 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
447 |
+
return batch
|
448 |
+
|
449 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
450 |
+
raw_datasets = raw_datasets.map(
|
451 |
+
remove_special_characters,
|
452 |
+
remove_columns=[text_column_name],
|
453 |
+
desc="remove special characters from datasets",
|
454 |
+
)
|
455 |
+
|
456 |
+
# save special tokens for tokenizer
|
457 |
+
word_delimiter_token = data_args.word_delimiter_token
|
458 |
+
unk_token = data_args.unk_token
|
459 |
+
pad_token = data_args.pad_token
|
460 |
+
|
461 |
+
# 3. Next, let's load the config as we might need it to create
|
462 |
+
# the tokenizer
|
463 |
+
# load config
|
464 |
+
config = AutoConfig.from_pretrained(
|
465 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
466 |
+
)
|
467 |
+
|
468 |
+
# 4. Next, if no tokenizer file is defined,
|
469 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
470 |
+
# the training and evaluation datasets
|
471 |
+
# We need to make sure that only first rank saves vocabulary
|
472 |
+
# make sure all processes wait until vocab is created
|
473 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
474 |
+
tokenizer_kwargs = {}
|
475 |
+
if tokenizer_name_or_path is None:
|
476 |
+
# save vocab in training output dir
|
477 |
+
tokenizer_name_or_path = training_args.output_dir
|
478 |
+
|
479 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
480 |
+
|
481 |
+
with training_args.main_process_first():
|
482 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
483 |
+
os.remove(vocab_file)
|
484 |
+
|
485 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
486 |
+
if not os.path.isfile(vocab_file):
|
487 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
488 |
+
vocab_dict = create_vocabulary_from_data(
|
489 |
+
raw_datasets,
|
490 |
+
word_delimiter_token=word_delimiter_token,
|
491 |
+
unk_token=unk_token,
|
492 |
+
pad_token=pad_token,
|
493 |
+
)
|
494 |
+
|
495 |
+
# save vocab dict to be loaded into tokenizer
|
496 |
+
with open(vocab_file, "w") as file:
|
497 |
+
json.dump(vocab_dict, file)
|
498 |
+
|
499 |
+
# if tokenizer has just been created
|
500 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
501 |
+
tokenizer_kwargs = {
|
502 |
+
"config": config if config.tokenizer_class is not None else None,
|
503 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
504 |
+
"unk_token": unk_token,
|
505 |
+
"pad_token": pad_token,
|
506 |
+
"word_delimiter_token": word_delimiter_token,
|
507 |
+
}
|
508 |
+
|
509 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
510 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
511 |
+
# one local process can concurrently download model & vocab.
|
512 |
+
|
513 |
+
# load feature_extractor and tokenizer
|
514 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
515 |
+
tokenizer_name_or_path,
|
516 |
+
use_auth_token=data_args.use_auth_token,
|
517 |
+
**tokenizer_kwargs,
|
518 |
+
)
|
519 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
520 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
521 |
+
)
|
522 |
+
|
523 |
+
# adapt config
|
524 |
+
config.update(
|
525 |
+
{
|
526 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
527 |
+
"attention_dropout": model_args.attention_dropout,
|
528 |
+
"hidden_dropout": model_args.hidden_dropout,
|
529 |
+
"final_dropout": model_args.final_dropout,
|
530 |
+
"mask_time_prob": model_args.mask_time_prob,
|
531 |
+
"mask_time_length": model_args.mask_time_length,
|
532 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
533 |
+
"mask_feature_length": model_args.mask_feature_length,
|
534 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
535 |
+
"layerdrop": model_args.layerdrop,
|
536 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
537 |
+
"pad_token_id": tokenizer.pad_token_id,
|
538 |
+
"vocab_size": len(tokenizer),
|
539 |
+
"activation_dropout": model_args.activation_dropout,
|
540 |
+
}
|
541 |
+
)
|
542 |
+
|
543 |
+
# create model
|
544 |
+
model = AutoModelForCTC.from_pretrained(
|
545 |
+
model_args.model_name_or_path,
|
546 |
+
cache_dir=model_args.cache_dir,
|
547 |
+
config=config,
|
548 |
+
use_auth_token=data_args.use_auth_token,
|
549 |
+
)
|
550 |
+
|
551 |
+
# freeze encoder
|
552 |
+
if model_args.freeze_feature_encoder:
|
553 |
+
model.freeze_feature_encoder()
|
554 |
+
|
555 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
556 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
557 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
558 |
+
# via the `feature_extractor`
|
559 |
+
|
560 |
+
# make sure that dataset decodes audio with correct sampling rate
|
561 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
562 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
563 |
+
raw_datasets = raw_datasets.cast_column(
|
564 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
565 |
+
)
|
566 |
+
|
567 |
+
# derive max & min input length for sample rate & max duration
|
568 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
569 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
570 |
+
audio_column_name = data_args.audio_column_name
|
571 |
+
num_workers = data_args.preprocessing_num_workers
|
572 |
+
|
573 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
574 |
+
phoneme_language = data_args.phoneme_language
|
575 |
+
|
576 |
+
# Preprocessing the datasets.
|
577 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
578 |
+
def prepare_dataset(batch):
|
579 |
+
# load audio
|
580 |
+
sample = batch[audio_column_name]
|
581 |
+
|
582 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
583 |
+
batch["input_values"] = inputs.input_values[0]
|
584 |
+
batch["input_length"] = len(batch["input_values"])
|
585 |
+
|
586 |
+
# encode targets
|
587 |
+
additional_kwargs = {}
|
588 |
+
if phoneme_language is not None:
|
589 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
590 |
+
|
591 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
592 |
+
return batch
|
593 |
+
|
594 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
595 |
+
vectorized_datasets = raw_datasets.map(
|
596 |
+
prepare_dataset,
|
597 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
598 |
+
num_proc=num_workers,
|
599 |
+
desc="preprocess datasets",
|
600 |
+
)
|
601 |
+
|
602 |
+
def is_audio_in_length_range(length):
|
603 |
+
return length > min_input_length and length < max_input_length
|
604 |
+
|
605 |
+
# filter data that is shorter than min_input_length
|
606 |
+
vectorized_datasets = vectorized_datasets.filter(
|
607 |
+
is_audio_in_length_range,
|
608 |
+
num_proc=num_workers,
|
609 |
+
input_columns=["input_length"],
|
610 |
+
)
|
611 |
+
|
612 |
+
# 7. Next, we can prepare the training.
|
613 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
614 |
+
# instantiate a data collator and the trainer
|
615 |
+
|
616 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
617 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
618 |
+
|
619 |
+
# for large datasets it is advised to run the preprocessing on a
|
620 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
621 |
+
# be a timeout when running the script in distributed mode.
|
622 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
623 |
+
# cached dataset
|
624 |
+
if data_args.preprocessing_only:
|
625 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
626 |
+
return
|
627 |
+
|
628 |
+
def compute_metrics(pred):
|
629 |
+
pred_logits = pred.predictions
|
630 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
631 |
+
|
632 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
633 |
+
|
634 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
635 |
+
# we do not want to group tokens when computing the metrics
|
636 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
637 |
+
|
638 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
639 |
+
|
640 |
+
return metrics
|
641 |
+
|
642 |
+
# Now save everything to be able to create a single processor later
|
643 |
+
if is_main_process(training_args.local_rank):
|
644 |
+
# save feature extractor, tokenizer and config
|
645 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
646 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
647 |
+
config.save_pretrained(training_args.output_dir)
|
648 |
+
|
649 |
+
try:
|
650 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
651 |
+
except (OSError, KeyError):
|
652 |
+
warnings.warn(
|
653 |
+
"Loading a processor from a feature extractor config that does not"
|
654 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
655 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
656 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
657 |
+
FutureWarning,
|
658 |
+
)
|
659 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
660 |
+
|
661 |
+
# Instantiate custom data collator
|
662 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
663 |
+
|
664 |
+
# Initialize Trainer
|
665 |
+
trainer = Trainer(
|
666 |
+
model=model,
|
667 |
+
data_collator=data_collator,
|
668 |
+
args=training_args,
|
669 |
+
compute_metrics=compute_metrics,
|
670 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
671 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
672 |
+
tokenizer=feature_extractor,
|
673 |
+
)
|
674 |
+
|
675 |
+
# 8. Finally, we can start training
|
676 |
+
|
677 |
+
# Training
|
678 |
+
if training_args.do_train:
|
679 |
+
|
680 |
+
# use last checkpoint if exist
|
681 |
+
if last_checkpoint is not None:
|
682 |
+
checkpoint = last_checkpoint
|
683 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
684 |
+
checkpoint = model_args.model_name_or_path
|
685 |
+
else:
|
686 |
+
checkpoint = None
|
687 |
+
|
688 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
689 |
+
trainer.save_model()
|
690 |
+
|
691 |
+
metrics = train_result.metrics
|
692 |
+
max_train_samples = (
|
693 |
+
data_args.max_train_samples
|
694 |
+
if data_args.max_train_samples is not None
|
695 |
+
else len(vectorized_datasets["train"])
|
696 |
+
)
|
697 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
698 |
+
|
699 |
+
trainer.log_metrics("train", metrics)
|
700 |
+
trainer.save_metrics("train", metrics)
|
701 |
+
trainer.save_state()
|
702 |
+
|
703 |
+
# Evaluation
|
704 |
+
results = {}
|
705 |
+
if training_args.do_eval:
|
706 |
+
logger.info("*** Evaluate ***")
|
707 |
+
metrics = trainer.evaluate()
|
708 |
+
max_eval_samples = (
|
709 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
710 |
+
)
|
711 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
712 |
+
|
713 |
+
trainer.log_metrics("eval", metrics)
|
714 |
+
trainer.save_metrics("eval", metrics)
|
715 |
+
|
716 |
+
# Write model card and (optionally) push to hub
|
717 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
718 |
+
kwargs = {
|
719 |
+
"finetuned_from": model_args.model_name_or_path,
|
720 |
+
"tasks": "speech-recognition",
|
721 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
722 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
723 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
724 |
+
}
|
725 |
+
if "common_voice" in data_args.dataset_name:
|
726 |
+
kwargs["language"] = config_name
|
727 |
+
|
728 |
+
if training_args.push_to_hub:
|
729 |
+
trainer.push_to_hub(**kwargs)
|
730 |
+
else:
|
731 |
+
trainer.create_model_card(**kwargs)
|
732 |
+
|
733 |
+
return results
|
734 |
+
|
735 |
+
|
736 |
+
if __name__ == "__main__":
|
737 |
+
main()
|
.ipynb_checkpoints/special_tokens_map-checkpoint.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
|
|
|
.ipynb_checkpoints/tokenizer_config-checkpoint.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
|
|
|
.ipynb_checkpoints/train_results-checkpoint.json
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"epoch": 0.03,
|
3 |
-
"train_loss": 12.162414741516113,
|
4 |
-
"train_runtime": 400.3916,
|
5 |
-
"train_samples": 11030,
|
6 |
-
"train_samples_per_second": 0.799,
|
7 |
-
"train_steps_per_second": 0.025
|
8 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/trainer_state-checkpoint.json
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 0.029006526468455404,
|
5 |
-
"global_step": 10,
|
6 |
-
"is_hyper_param_search": false,
|
7 |
-
"is_local_process_zero": true,
|
8 |
-
"is_world_process_zero": true,
|
9 |
-
"log_history": [
|
10 |
-
{
|
11 |
-
"epoch": 0.0,
|
12 |
-
"learning_rate": 3.75e-06,
|
13 |
-
"loss": 13.605,
|
14 |
-
"step": 1
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"epoch": 0.01,
|
18 |
-
"learning_rate": 7.5e-06,
|
19 |
-
"loss": 11.0063,
|
20 |
-
"step": 2
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"epoch": 0.01,
|
24 |
-
"learning_rate": 1.1249999999999999e-05,
|
25 |
-
"loss": 11.6693,
|
26 |
-
"step": 3
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"epoch": 0.01,
|
30 |
-
"learning_rate": 1.5e-05,
|
31 |
-
"loss": 13.432,
|
32 |
-
"step": 4
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"epoch": 0.01,
|
36 |
-
"learning_rate": 1.875e-05,
|
37 |
-
"loss": 10.3458,
|
38 |
-
"step": 5
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"epoch": 0.01,
|
42 |
-
"eval_loss": 15.09913444519043,
|
43 |
-
"eval_runtime": 139.8551,
|
44 |
-
"eval_samples_per_second": 33.034,
|
45 |
-
"eval_steps_per_second": 4.133,
|
46 |
-
"eval_wer": 1.0,
|
47 |
-
"step": 5
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"epoch": 0.02,
|
51 |
-
"learning_rate": 2.2499999999999998e-05,
|
52 |
-
"loss": 15.2451,
|
53 |
-
"step": 6
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"epoch": 0.02,
|
57 |
-
"learning_rate": 2.625e-05,
|
58 |
-
"loss": 10.0481,
|
59 |
-
"step": 7
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"epoch": 0.02,
|
63 |
-
"learning_rate": 3e-05,
|
64 |
-
"loss": 12.3838,
|
65 |
-
"step": 8
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"epoch": 0.03,
|
69 |
-
"learning_rate": 3.3749999999999994e-05,
|
70 |
-
"loss": 11.9858,
|
71 |
-
"step": 9
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"epoch": 0.03,
|
75 |
-
"learning_rate": 3.75e-05,
|
76 |
-
"loss": 11.9029,
|
77 |
-
"step": 10
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"epoch": 0.03,
|
81 |
-
"eval_loss": 14.213573455810547,
|
82 |
-
"eval_runtime": 160.2552,
|
83 |
-
"eval_samples_per_second": 28.829,
|
84 |
-
"eval_steps_per_second": 3.607,
|
85 |
-
"eval_wer": 1.0,
|
86 |
-
"step": 10
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"epoch": 0.03,
|
90 |
-
"step": 10,
|
91 |
-
"total_flos": 4.405923604988928e+16,
|
92 |
-
"train_loss": 12.162414741516113,
|
93 |
-
"train_runtime": 400.3916,
|
94 |
-
"train_samples_per_second": 0.799,
|
95 |
-
"train_steps_per_second": 0.025
|
96 |
-
}
|
97 |
-
],
|
98 |
-
"max_steps": 10,
|
99 |
-
"num_train_epochs": 1,
|
100 |
-
"total_flos": 4.405923604988928e+16,
|
101 |
-
"trial_name": null,
|
102 |
-
"trial_params": null
|
103 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -20,8 +20,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss:
|
24 |
-
- Wer:
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -40,7 +40,7 @@ More information needed
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
-
- learning_rate:
|
44 |
- train_batch_size: 8
|
45 |
- eval_batch_size: 8
|
46 |
- seed: 42
|
@@ -49,15 +49,47 @@ The following hyperparameters were used during training:
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 2000
|
52 |
-
-
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step
|
58 |
-
|
59 |
-
|
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3179
|
24 |
+
- Wer: 0.2735
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 7.5e-05
|
44 |
- train_batch_size: 8
|
45 |
- eval_batch_size: 8
|
46 |
- seed: 42
|
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 2000
|
52 |
+
- num_epochs: 50.0
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
59 |
+
| 3.3332 | 1.45 | 500 | 3.2920 | 1.0 |
|
60 |
+
| 2.9269 | 2.91 | 1000 | 2.9415 | 0.9966 |
|
61 |
+
| 2.0719 | 4.36 | 1500 | 1.1641 | 0.8508 |
|
62 |
+
| 1.7404 | 5.81 | 2000 | 0.7281 | 0.6846 |
|
63 |
+
| 1.5921 | 7.27 | 2500 | 0.5886 | 0.5147 |
|
64 |
+
| 1.4941 | 8.72 | 3000 | 0.5183 | 0.5063 |
|
65 |
+
| 1.4486 | 10.17 | 3500 | 0.4749 | 0.4676 |
|
66 |
+
| 1.3899 | 11.63 | 4000 | 0.4565 | 0.4432 |
|
67 |
+
| 1.3881 | 13.08 | 4500 | 0.4316 | 0.4228 |
|
68 |
+
| 1.3572 | 14.53 | 5000 | 0.4195 | 0.3834 |
|
69 |
+
| 1.3261 | 15.99 | 5500 | 0.3974 | 0.3607 |
|
70 |
+
| 1.2809 | 17.44 | 6000 | 0.3845 | 0.3467 |
|
71 |
+
| 1.2713 | 18.89 | 6500 | 0.3832 | 0.3450 |
|
72 |
+
| 1.257 | 20.35 | 7000 | 0.3779 | 0.3373 |
|
73 |
+
| 1.2298 | 21.8 | 7500 | 0.3744 | 0.3391 |
|
74 |
+
| 1.2173 | 23.26 | 8000 | 0.3745 | 0.3262 |
|
75 |
+
| 1.1966 | 24.71 | 8500 | 0.3680 | 0.3241 |
|
76 |
+
| 1.1925 | 26.16 | 9000 | 0.3605 | 0.3171 |
|
77 |
+
| 1.1692 | 27.61 | 9500 | 0.3512 | 0.3147 |
|
78 |
+
| 1.1704 | 29.07 | 10000 | 0.3532 | 0.3098 |
|
79 |
+
| 1.1595 | 30.52 | 10500 | 0.3425 | 0.3039 |
|
80 |
+
| 1.1433 | 31.97 | 11000 | 0.3568 | 0.3026 |
|
81 |
+
| 1.1295 | 33.43 | 11500 | 0.3461 | 0.2992 |
|
82 |
+
| 1.1131 | 34.88 | 12000 | 0.3349 | 0.2942 |
|
83 |
+
| 1.1015 | 36.34 | 12500 | 0.3378 | 0.2961 |
|
84 |
+
| 1.0835 | 37.79 | 13000 | 0.3282 | 0.2865 |
|
85 |
+
| 1.083 | 39.24 | 13500 | 0.3182 | 0.2826 |
|
86 |
+
| 1.0819 | 40.7 | 14000 | 0.3264 | 0.2850 |
|
87 |
+
| 1.072 | 42.15 | 14500 | 0.3279 | 0.2817 |
|
88 |
+
| 1.0456 | 43.6 | 15000 | 0.3234 | 0.2793 |
|
89 |
+
| 1.0581 | 45.06 | 15500 | 0.3220 | 0.2779 |
|
90 |
+
| 1.0406 | 46.51 | 16000 | 0.3208 | 0.2762 |
|
91 |
+
| 1.0422 | 47.96 | 16500 | 0.3184 | 0.2752 |
|
92 |
+
| 1.0099 | 49.42 | 17000 | 0.3181 | 0.2735 |
|
93 |
|
94 |
|
95 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
{
|
2 |
-
"epoch": 0
|
3 |
-
"eval_loss":
|
4 |
-
"eval_runtime":
|
5 |
"eval_samples": 4620,
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second":
|
8 |
-
"eval_wer":
|
9 |
-
"train_loss":
|
10 |
-
"train_runtime":
|
11 |
"train_samples": 11030,
|
12 |
-
"train_samples_per_second":
|
13 |
-
"train_steps_per_second": 0.
|
14 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.31790396571159363,
|
4 |
+
"eval_runtime": 136.0793,
|
5 |
"eval_samples": 4620,
|
6 |
+
"eval_samples_per_second": 33.951,
|
7 |
+
"eval_steps_per_second": 4.248,
|
8 |
+
"eval_wer": 0.2734810010402007,
|
9 |
+
"train_loss": 1.4555730460410894,
|
10 |
+
"train_runtime": 29339.4334,
|
11 |
"train_samples": 11030,
|
12 |
+
"train_samples_per_second": 18.797,
|
13 |
+
"train_steps_per_second": 0.586
|
14 |
}
|
checkpoint-10/trainer_state.json
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 0.029006526468455404,
|
5 |
-
"global_step": 10,
|
6 |
-
"is_hyper_param_search": false,
|
7 |
-
"is_local_process_zero": true,
|
8 |
-
"is_world_process_zero": true,
|
9 |
-
"log_history": [
|
10 |
-
{
|
11 |
-
"epoch": 0.0,
|
12 |
-
"learning_rate": 3.75e-06,
|
13 |
-
"loss": 13.605,
|
14 |
-
"step": 1
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"epoch": 0.01,
|
18 |
-
"learning_rate": 7.5e-06,
|
19 |
-
"loss": 11.0063,
|
20 |
-
"step": 2
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"epoch": 0.01,
|
24 |
-
"learning_rate": 1.1249999999999999e-05,
|
25 |
-
"loss": 11.6693,
|
26 |
-
"step": 3
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"epoch": 0.01,
|
30 |
-
"learning_rate": 1.5e-05,
|
31 |
-
"loss": 13.432,
|
32 |
-
"step": 4
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"epoch": 0.01,
|
36 |
-
"learning_rate": 1.875e-05,
|
37 |
-
"loss": 10.3458,
|
38 |
-
"step": 5
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"epoch": 0.01,
|
42 |
-
"eval_loss": 15.09913444519043,
|
43 |
-
"eval_runtime": 139.8551,
|
44 |
-
"eval_samples_per_second": 33.034,
|
45 |
-
"eval_steps_per_second": 4.133,
|
46 |
-
"eval_wer": 1.0,
|
47 |
-
"step": 5
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"epoch": 0.02,
|
51 |
-
"learning_rate": 2.2499999999999998e-05,
|
52 |
-
"loss": 15.2451,
|
53 |
-
"step": 6
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"epoch": 0.02,
|
57 |
-
"learning_rate": 2.625e-05,
|
58 |
-
"loss": 10.0481,
|
59 |
-
"step": 7
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"epoch": 0.02,
|
63 |
-
"learning_rate": 3e-05,
|
64 |
-
"loss": 12.3838,
|
65 |
-
"step": 8
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"epoch": 0.03,
|
69 |
-
"learning_rate": 3.3749999999999994e-05,
|
70 |
-
"loss": 11.9858,
|
71 |
-
"step": 9
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"epoch": 0.03,
|
75 |
-
"learning_rate": 3.75e-05,
|
76 |
-
"loss": 11.9029,
|
77 |
-
"step": 10
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"epoch": 0.03,
|
81 |
-
"eval_loss": 14.213573455810547,
|
82 |
-
"eval_runtime": 160.2552,
|
83 |
-
"eval_samples_per_second": 28.829,
|
84 |
-
"eval_steps_per_second": 3.607,
|
85 |
-
"eval_wer": 1.0,
|
86 |
-
"step": 10
|
87 |
-
}
|
88 |
-
],
|
89 |
-
"max_steps": 10,
|
90 |
-
"num_train_epochs": 1,
|
91 |
-
"total_flos": 4.405923604988928e+16,
|
92 |
-
"trial_name": null,
|
93 |
-
"trial_params": null
|
94 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{checkpoint-5 → checkpoint-1000}/config.json
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "marinone94/xls-r-300m-sv-robust",
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
{checkpoint-10 → checkpoint-1000}/optimizer.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997e39e3068f6334cf85b372c45d1b1aec7a201fbe1f730152e5d4a0b55fe960
|
3 |
+
size 2490362385
|
{checkpoint-10 → checkpoint-1000}/preprocessor_config.json
RENAMED
File without changes
|
{checkpoint-5 → checkpoint-1000}/pytorch_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262075377
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a0d1201f69f8dc32ebd7a780daea905f15db2bbd2da823ebd02ed30aa3bee71
|
3 |
size 1262075377
|
{checkpoint-5 → checkpoint-1000}/rng_state.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a3789e7a321dae6b4bf60417d43627b247a6090022ececb8fe9e7931554f2a6
|
3 |
+
size 14503
|
{checkpoint-5 → checkpoint-1000}/scaler.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 559
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:637182a715f3446bd8163c96f6b2a5376a6865fe60d3b7086f55025f5f89924a
|
3 |
size 559
|
{checkpoint-10 → checkpoint-1000}/scheduler.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 623
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0a14af155fdce6ec463b3e3ef0c4d974d177934cf33badd4dcae71e1061f0d5
|
3 |
size 623
|
checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9050036258158087,
|
5 |
+
"global_step": 1000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.29,
|
12 |
+
"learning_rate": 3.675e-06,
|
13 |
+
"loss": 1.0197,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.58,
|
18 |
+
"learning_rate": 7.425e-06,
|
19 |
+
"loss": 1.0171,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.87,
|
24 |
+
"learning_rate": 1.1137499999999998e-05,
|
25 |
+
"loss": 1.026,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 1.16,
|
30 |
+
"learning_rate": 1.48875e-05,
|
31 |
+
"loss": 1.0383,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.45,
|
36 |
+
"learning_rate": 1.86375e-05,
|
37 |
+
"loss": 1.0296,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 1.45,
|
42 |
+
"eval_loss": 0.3191435635089874,
|
43 |
+
"eval_runtime": 138.7872,
|
44 |
+
"eval_samples_per_second": 33.288,
|
45 |
+
"eval_steps_per_second": 4.165,
|
46 |
+
"eval_wer": 0.27421526035611576,
|
47 |
+
"step": 500
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 1.74,
|
51 |
+
"learning_rate": 2.23875e-05,
|
52 |
+
"loss": 1.0529,
|
53 |
+
"step": 600
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 2.03,
|
57 |
+
"learning_rate": 2.6137499999999995e-05,
|
58 |
+
"loss": 1.0442,
|
59 |
+
"step": 700
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 2.32,
|
63 |
+
"learning_rate": 2.9887499999999998e-05,
|
64 |
+
"loss": 1.0632,
|
65 |
+
"step": 800
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 2.61,
|
69 |
+
"learning_rate": 3.36375e-05,
|
70 |
+
"loss": 1.037,
|
71 |
+
"step": 900
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 2.91,
|
75 |
+
"learning_rate": 3.7387499999999994e-05,
|
76 |
+
"loss": 1.0495,
|
77 |
+
"step": 1000
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 2.91,
|
81 |
+
"eval_loss": 0.33204758167266846,
|
82 |
+
"eval_runtime": 139.9575,
|
83 |
+
"eval_samples_per_second": 33.01,
|
84 |
+
"eval_steps_per_second": 4.13,
|
85 |
+
"eval_wer": 0.28963470599033225,
|
86 |
+
"step": 1000
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"max_steps": 17200,
|
90 |
+
"num_train_epochs": 50,
|
91 |
+
"total_flos": 2.9636799545011507e+18,
|
92 |
+
"trial_name": null,
|
93 |
+
"trial_params": null
|
94 |
+
}
|
{checkpoint-5 → checkpoint-1000}/training_args.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2991
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0efc7aad7fd151e94de194f50e712cd8d3c82a2cf2ccee51d253c9130af43c3a
|
3 |
size 2991
|
{checkpoint-10 → checkpoint-1500}/config.json
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "marinone94/xls-r-300m-sv-robust",
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
{checkpoint-5 → checkpoint-1500}/optimizer.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b883c1f26bb60f965959e813f1fda3c9b0ed41e76a86ef50f71624403b758fb8
|
3 |
+
size 2490362385
|
{checkpoint-5 → checkpoint-1500}/preprocessor_config.json
RENAMED
File without changes
|
{checkpoint-10 → checkpoint-1500}/pytorch_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262075377
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c440e5ae149a9c96063d6fceaaf311e4a73da0f507f9d87f6781437b8936e2e
|
3 |
size 1262075377
|
{checkpoint-10 → checkpoint-1500}/rng_state.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4982f7f3a3d3c9848cfac0ab0e4aff5b6f3cfec2ee0d2bf0be5471908380429e
|
3 |
+
size 14503
|
{checkpoint-10 → checkpoint-1500}/scaler.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 559
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85136f3eae8581fb19c033614c8131d6fa5eb689dca190899d818b25b6fac92d
|
3 |
size 559
|
{checkpoint-5 → checkpoint-1500}/scheduler.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 623
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15ccfdada89267f464b440ff4504b5d32a3dac17d15e8a8d5898e8ba842c4cbe
|
3 |
size 623
|
checkpoint-1500/trainer_state.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 4.359680928208847,
|
5 |
+
"global_step": 1500,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.29,
|
12 |
+
"learning_rate": 3.675e-06,
|
13 |
+
"loss": 1.0197,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.58,
|
18 |
+
"learning_rate": 7.425e-06,
|
19 |
+
"loss": 1.0171,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.87,
|
24 |
+
"learning_rate": 1.1137499999999998e-05,
|
25 |
+
"loss": 1.026,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 1.16,
|
30 |
+
"learning_rate": 1.48875e-05,
|
31 |
+
"loss": 1.0383,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.45,
|
36 |
+
"learning_rate": 1.86375e-05,
|
37 |
+
"loss": 1.0296,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 1.45,
|
42 |
+
"eval_loss": 0.3191435635089874,
|
43 |
+
"eval_runtime": 138.7872,
|
44 |
+
"eval_samples_per_second": 33.288,
|
45 |
+
"eval_steps_per_second": 4.165,
|
46 |
+
"eval_wer": 0.27421526035611576,
|
47 |
+
"step": 500
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 1.74,
|
51 |
+
"learning_rate": 2.23875e-05,
|
52 |
+
"loss": 1.0529,
|
53 |
+
"step": 600
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 2.03,
|
57 |
+
"learning_rate": 2.6137499999999995e-05,
|
58 |
+
"loss": 1.0442,
|
59 |
+
"step": 700
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 2.32,
|
63 |
+
"learning_rate": 2.9887499999999998e-05,
|
64 |
+
"loss": 1.0632,
|
65 |
+
"step": 800
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 2.61,
|
69 |
+
"learning_rate": 3.36375e-05,
|
70 |
+
"loss": 1.037,
|
71 |
+
"step": 900
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 2.91,
|
75 |
+
"learning_rate": 3.7387499999999994e-05,
|
76 |
+
"loss": 1.0495,
|
77 |
+
"step": 1000
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 2.91,
|
81 |
+
"eval_loss": 0.33204758167266846,
|
82 |
+
"eval_runtime": 139.9575,
|
83 |
+
"eval_samples_per_second": 33.01,
|
84 |
+
"eval_steps_per_second": 4.13,
|
85 |
+
"eval_wer": 0.28963470599033225,
|
86 |
+
"step": 1000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 3.2,
|
90 |
+
"learning_rate": 4.11375e-05,
|
91 |
+
"loss": 1.0547,
|
92 |
+
"step": 1100
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 3.49,
|
96 |
+
"learning_rate": 4.48875e-05,
|
97 |
+
"loss": 1.06,
|
98 |
+
"step": 1200
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 3.78,
|
102 |
+
"learning_rate": 4.8637499999999996e-05,
|
103 |
+
"loss": 1.0655,
|
104 |
+
"step": 1300
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 4.07,
|
108 |
+
"learning_rate": 5.23875e-05,
|
109 |
+
"loss": 1.0757,
|
110 |
+
"step": 1400
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 4.36,
|
114 |
+
"learning_rate": 5.61375e-05,
|
115 |
+
"loss": 1.0532,
|
116 |
+
"step": 1500
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 4.36,
|
120 |
+
"eval_loss": 0.344494104385376,
|
121 |
+
"eval_runtime": 139.9249,
|
122 |
+
"eval_samples_per_second": 33.018,
|
123 |
+
"eval_steps_per_second": 4.131,
|
124 |
+
"eval_wer": 0.2935201615370495,
|
125 |
+
"step": 1500
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"max_steps": 17200,
|
129 |
+
"num_train_epochs": 50,
|
130 |
+
"total_flos": 4.445118706030802e+18,
|
131 |
+
"trial_name": null,
|
132 |
+
"trial_params": null
|
133 |
+
}
|
{checkpoint-10 → checkpoint-1500}/training_args.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2991
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0efc7aad7fd151e94de194f50e712cd8d3c82a2cf2ccee51d253c9130af43c3a
|
3 |
size 2991
|
checkpoint-5/trainer_state.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 0.014503263234227702,
|
5 |
-
"global_step": 5,
|
6 |
-
"is_hyper_param_search": false,
|
7 |
-
"is_local_process_zero": true,
|
8 |
-
"is_world_process_zero": true,
|
9 |
-
"log_history": [
|
10 |
-
{
|
11 |
-
"epoch": 0.0,
|
12 |
-
"learning_rate": 3.75e-06,
|
13 |
-
"loss": 13.605,
|
14 |
-
"step": 1
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"epoch": 0.01,
|
18 |
-
"learning_rate": 7.5e-06,
|
19 |
-
"loss": 11.0063,
|
20 |
-
"step": 2
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"epoch": 0.01,
|
24 |
-
"learning_rate": 1.1249999999999999e-05,
|
25 |
-
"loss": 11.6693,
|
26 |
-
"step": 3
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"epoch": 0.01,
|
30 |
-
"learning_rate": 1.5e-05,
|
31 |
-
"loss": 13.432,
|
32 |
-
"step": 4
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"epoch": 0.01,
|
36 |
-
"learning_rate": 1.875e-05,
|
37 |
-
"loss": 10.3458,
|
38 |
-
"step": 5
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"epoch": 0.01,
|
42 |
-
"eval_loss": 15.09913444519043,
|
43 |
-
"eval_runtime": 139.8551,
|
44 |
-
"eval_samples_per_second": 33.034,
|
45 |
-
"eval_steps_per_second": 4.133,
|
46 |
-
"eval_wer": 1.0,
|
47 |
-
"step": 5
|
48 |
-
}
|
49 |
-
],
|
50 |
-
"max_steps": 10,
|
51 |
-
"num_train_epochs": 1,
|
52 |
-
"total_flos": 2.486436496625664e+16,
|
53 |
-
"trial_name": null,
|
54 |
-
"trial_params": null
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-500/.ipynb_checkpoints/trainer_state-checkpoint.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.4525018129079044,
|
5 |
+
"global_step": 500,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.29,
|
12 |
+
"learning_rate": 3.675e-06,
|
13 |
+
"loss": 1.0197,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.58,
|
18 |
+
"learning_rate": 7.425e-06,
|
19 |
+
"loss": 1.0171,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.87,
|
24 |
+
"learning_rate": 1.1137499999999998e-05,
|
25 |
+
"loss": 1.026,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 1.16,
|
30 |
+
"learning_rate": 1.48875e-05,
|
31 |
+
"loss": 1.0383,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.45,
|
36 |
+
"learning_rate": 1.86375e-05,
|
37 |
+
"loss": 1.0296,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 1.45,
|
42 |
+
"eval_loss": 0.3191435635089874,
|
43 |
+
"eval_runtime": 138.7872,
|
44 |
+
"eval_samples_per_second": 33.288,
|
45 |
+
"eval_steps_per_second": 4.165,
|
46 |
+
"eval_wer": 0.27421526035611576,
|
47 |
+
"step": 500
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"max_steps": 17200,
|
51 |
+
"num_train_epochs": 50,
|
52 |
+
"total_flos": 1.4827194756605722e+18,
|
53 |
+
"trial_name": null,
|
54 |
+
"trial_params": null
|
55 |
+
}
|
.ipynb_checkpoints/config-checkpoint.json → checkpoint-500/config.json
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "marinone94/xls-r-300m-sv-robust",
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
checkpoint-500/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11d7b3b64b03807fa1443a1bbb6c48b3760f1488bdb1c3d2a04da0de2ef280a6
|
3 |
+
size 2490362385
|
.ipynb_checkpoints/preprocessor_config-checkpoint.json → checkpoint-500/preprocessor_config.json
RENAMED
File without changes
|
checkpoint-500/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:849f22348838353270f3fea71da7123aea0c4d81f944d73fe8359395ee3e8678
|
3 |
+
size 1262075377
|
checkpoint-500/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b82ac75b07e68dc3bc90e76f55a339f64dce724d87a9ae3c69ee46df441867
|
3 |
+
size 14503
|
checkpoint-500/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c42d0f35980b579693b6d665e1977f1cb989811c56ccb359dcaf6fac0e92a29d
|
3 |
+
size 559
|
checkpoint-500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ea5e90d46886b0a7f8061d0a93792e2f7c6219a21813faad05be67fa21d1a40
|
3 |
+
size 623
|
checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.4525018129079044,
|
5 |
+
"global_step": 500,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.29,
|
12 |
+
"learning_rate": 3.675e-06,
|
13 |
+
"loss": 1.0197,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.58,
|
18 |
+
"learning_rate": 7.425e-06,
|
19 |
+
"loss": 1.0171,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.87,
|
24 |
+
"learning_rate": 1.1137499999999998e-05,
|
25 |
+
"loss": 1.026,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 1.16,
|
30 |
+
"learning_rate": 1.48875e-05,
|
31 |
+
"loss": 1.0383,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.45,
|
36 |
+
"learning_rate": 1.86375e-05,
|
37 |
+
"loss": 1.0296,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 1.45,
|
42 |
+
"eval_loss": 0.3191435635089874,
|
43 |
+
"eval_runtime": 138.7872,
|
44 |
+
"eval_samples_per_second": 33.288,
|
45 |
+
"eval_steps_per_second": 4.165,
|
46 |
+
"eval_wer": 0.27421526035611576,
|
47 |
+
"step": 500
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"max_steps": 17200,
|
51 |
+
"num_train_epochs": 50,
|
52 |
+
"total_flos": 1.4827194756605722e+18,
|
53 |
+
"trial_name": null,
|
54 |
+
"trial_params": null
|
55 |
+
}
|
checkpoint-500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0efc7aad7fd151e94de194f50e712cd8d3c82a2cf2ccee51d253c9130af43c3a
|
3 |
+
size 2991
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "marinone94/xls-r-300m-sv-robust",
|
3 |
"activation_dropout": 0.1,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
eval_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch": 0
|
3 |
-
"eval_loss":
|
4 |
-
"eval_runtime":
|
5 |
"eval_samples": 4620,
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second":
|
8 |
-
"eval_wer":
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.31790396571159363,
|
4 |
+
"eval_runtime": 136.0793,
|
5 |
"eval_samples": 4620,
|
6 |
+
"eval_samples_per_second": 33.951,
|
7 |
+
"eval_steps_per_second": 4.248,
|
8 |
+
"eval_wer": 0.2734810010402007
|
9 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262075377
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:849f22348838353270f3fea71da7123aea0c4d81f944d73fe8359395ee3e8678
|
3 |
size 1262075377
|
run-dummy-ab-gpu.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
+
--model_name_or_path="hf-test/xls-r-dummy" \
|
4 |
+
--dataset_config_name="ab" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--max_steps="10" \
|
8 |
+
--per_device_train_batch_size="2" \
|
9 |
+
--learning_rate="3e-4" \
|
10 |
+
--save_total_limit="1" \
|
11 |
+
--evaluation_strategy="steps" \
|
12 |
+
--text_column_name="sentence" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--save_steps="5" \
|
15 |
+
--layerdrop="0.0" \
|
16 |
+
--freeze_feature_encoder \
|
17 |
+
--gradient_checkpointing \
|
18 |
+
--fp16 \
|
19 |
+
--group_by_length \
|
20 |
+
--push_to_hub \
|
21 |
+
--use_auth_token \
|
22 |
+
--do_train --do_eval
|
run-dummy-sv-gpu.sh
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
python run_speech_recognition_ctc.py \
|
2 |
-
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
-
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
4 |
-
--dataset_config_name="sv-SE" \
|
5 |
-
--output_dir="./" \
|
6 |
-
--overwrite_output_dir \
|
7 |
-
--max_steps="10" \
|
8 |
-
--per_device_train_batch_size="8" \
|
9 |
-
--per_device_eval_batch_size="8" \
|
10 |
-
--gradient_accumulation_steps="4" \
|
11 |
-
--learning_rate="7.5e-3" \
|
12 |
-
--warmup_steps="2000" \
|
13 |
-
--length_column_name="input_length" \
|
14 |
-
--evaluation_strategy="steps" \
|
15 |
-
--text_column_name="sentence" \
|
16 |
-
--chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
|
17 |
-
--save_steps="5" \
|
18 |
-
--eval_steps="5" \
|
19 |
-
--logging_steps="1" \
|
20 |
-
--layerdrop="0.0" \
|
21 |
-
--activation_dropout="0.1" \
|
22 |
-
--save_total_limit="3" \
|
23 |
-
--freeze_feature_encoder \
|
24 |
-
--feat_proj_dropout="0.0" \
|
25 |
-
--mask_time_prob="0.75" \
|
26 |
-
--mask_time_length="10" \
|
27 |
-
--mask_feature_prob="0.25" \
|
28 |
-
--mask_feature_length="64" \
|
29 |
-
--gradient_checkpointing \
|
30 |
-
--use_auth_token \
|
31 |
-
--fp16 \
|
32 |
-
--group_by_length \
|
33 |
-
--do_train --do_eval \
|
34 |
-
--push_to_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run.sh
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
python run_speech_recognition_ctc.py \
|
2 |
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
-
--model_name_or_path="
|
4 |
--dataset_config_name="sv-SE" \
|
5 |
--output_dir="./" \
|
6 |
--overwrite_output_dir \
|
|
|
1 |
python run_speech_recognition_ctc.py \
|
2 |
--dataset_name="mozilla-foundation/common_voice_7_0" \
|
3 |
+
--model_name_or_path="marinone94/xls-r-300m-sv-robust" \
|
4 |
--dataset_config_name="sv-SE" \
|
5 |
--output_dir="./" \
|
6 |
--overwrite_output_dir \
|
special_tokens_map.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|