marinone94
commited on
Commit
·
c369c05
1
Parent(s):
d87b765
Add LM in training script
Browse files- .gitignore +2 -1
- eval.py +1 -1
- requirements.txt +2 -0
- run.sh +2 -1
- run_speech_recognition_ctc.py +21 -1
- train_n_gram_lm_with_KenLM.ipynb +2262 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
*venv
|
|
|
|
1 |
+
*venv
|
2 |
+
.ipynb_checkpoints/
|
eval.py
CHANGED
@@ -68,7 +68,7 @@ def main(args):
|
|
68 |
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
|
70 |
# for testing: only process the first two examples as a test
|
71 |
-
dataset = dataset.select(range(10))
|
72 |
|
73 |
# load processor
|
74 |
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
|
|
68 |
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
|
70 |
# for testing: only process the first two examples as a test
|
71 |
+
# dataset = dataset.select(range(10))
|
72 |
|
73 |
# load processor
|
74 |
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
requirements.txt
CHANGED
@@ -3,3 +3,5 @@ torch >= 1.5
|
|
3 |
torchaudio
|
4 |
librosa
|
5 |
jiwer
|
|
|
|
|
|
3 |
torchaudio
|
4 |
librosa
|
5 |
jiwer
|
6 |
+
wandb
|
7 |
+
pyctcdecode
|
run.sh
CHANGED
@@ -31,4 +31,5 @@ python run_speech_recognition_ctc.py \
|
|
31 |
--fp16 \
|
32 |
--group_by_length \
|
33 |
--do_train --do_eval \
|
34 |
-
--push_to_hub
|
|
|
|
31 |
--fp16 \
|
32 |
--group_by_length \
|
33 |
--do_train --do_eval \
|
34 |
+
--push_to_hub \
|
35 |
+
--push_lm_to_hub
|
run_speech_recognition_ctc.py
CHANGED
@@ -31,6 +31,7 @@ import numpy as np
|
|
31 |
import torch
|
32 |
import wandb
|
33 |
from datasets import DatasetDict, load_dataset, load_metric
|
|
|
34 |
|
35 |
import transformers
|
36 |
from transformers import (
|
@@ -43,6 +44,7 @@ from transformers import (
|
|
43 |
Trainer,
|
44 |
TrainingArguments,
|
45 |
Wav2Vec2Processor,
|
|
|
46 |
set_seed,
|
47 |
)
|
48 |
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
@@ -359,7 +361,8 @@ def main():
|
|
359 |
|
360 |
# TODO: Replace with check of wandb env vars
|
361 |
try:
|
362 |
-
|
|
|
363 |
wandb.login()
|
364 |
training_args.report_to = ["wandb"]
|
365 |
training_args.run_name = f"{datetime.datetime.utcnow()}".replace(" ", "T")
|
@@ -740,6 +743,23 @@ def main():
|
|
740 |
trainer.push_to_hub(**kwargs)
|
741 |
else:
|
742 |
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
743 |
|
744 |
return results
|
745 |
|
|
|
31 |
import torch
|
32 |
import wandb
|
33 |
from datasets import DatasetDict, load_dataset, load_metric
|
34 |
+
from pyctcdecode import build_ctcdecoder
|
35 |
|
36 |
import transformers
|
37 |
from transformers import (
|
|
|
44 |
Trainer,
|
45 |
TrainingArguments,
|
46 |
Wav2Vec2Processor,
|
47 |
+
Wav2Vec2ProcessorWithLM,
|
48 |
set_seed,
|
49 |
)
|
50 |
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
|
361 |
|
362 |
# TODO: Replace with check of wandb env vars
|
363 |
try:
|
364 |
+
repo_name = os.getcwd().split("/")[-1]
|
365 |
+
os.environ["WANDB_PROJECT"] = repo_name
|
366 |
wandb.login()
|
367 |
training_args.report_to = ["wandb"]
|
368 |
training_args.run_name = f"{datetime.datetime.utcnow()}".replace(" ", "T")
|
|
|
743 |
trainer.push_to_hub(**kwargs)
|
744 |
else:
|
745 |
trainer.create_model_card(**kwargs)
|
746 |
+
|
747 |
+
if training_args.push_lm_to_hub:
|
748 |
+
vocab_dict = processor.tokenizer.get_vocab()
|
749 |
+
sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
|
750 |
+
|
751 |
+
decoder = build_ctcdecoder(
|
752 |
+
labels=list(sorted_vocab_dict.keys()),
|
753 |
+
kenlm_model_path="5gram_sv_lm.bin",
|
754 |
+
)
|
755 |
+
|
756 |
+
processor_with_lm = Wav2Vec2ProcessorWithLM(
|
757 |
+
feature_extractor=processor.feature_extractor,
|
758 |
+
tokenizer=processor.tokenizer,
|
759 |
+
decoder=decoder
|
760 |
+
)
|
761 |
+
processor_with_lm.save_pretrained(repo_name)
|
762 |
+
processor_with_lm.push_to_hub(**kwargs)
|
763 |
|
764 |
return results
|
765 |
|
train_n_gram_lm_with_KenLM.ipynb
ADDED
@@ -0,0 +1,2262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Train n-gram language model with KenLM on Colab"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {
|
13 |
+
"id": "PtkgQE7--Ufg"
|
14 |
+
},
|
15 |
+
"source": [
|
16 |
+
"See https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Boosting_Wav2Vec2_with_n_grams_in_Transformers.ipynb#scrollTo=X9qg4FPt2zi8 for detailed explanation on how to use KenLM to boost wav2vec2 fine-tuned models on 🤗"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {
|
22 |
+
"id": "VBCqCboC6Soc"
|
23 |
+
},
|
24 |
+
"source": [
|
25 |
+
"Install KenLM"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 4,
|
31 |
+
"metadata": {
|
32 |
+
"colab": {
|
33 |
+
"base_uri": "https://localhost:8080/"
|
34 |
+
},
|
35 |
+
"id": "-CKLr9bI6GPE",
|
36 |
+
"outputId": "0c6d917e-4896-4e35-c92f-4b085f77c893"
|
37 |
+
},
|
38 |
+
"outputs": [
|
39 |
+
{
|
40 |
+
"name": "stdout",
|
41 |
+
"output_type": "stream",
|
42 |
+
"text": [
|
43 |
+
"The operation couldn’t be completed. Unable to locate a Java Runtime that supports apt.\r\n",
|
44 |
+
"Please visit http://www.java.com for information on installing Java.\r\n",
|
45 |
+
"\r\n"
|
46 |
+
]
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"source": [
|
50 |
+
"!sudo apt install build-essential cmake libboost-system-dev libboost-thread-dev libboost-program-options-dev libboost-test-dev libeigen3-dev zlib1g-dev libbz2-dev liblzma-dev"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {
|
57 |
+
"colab": {
|
58 |
+
"base_uri": "https://localhost:8080/"
|
59 |
+
},
|
60 |
+
"id": "TIlrFi3M6XO4",
|
61 |
+
"outputId": "7c986a6f-f84c-4d29-b3f8-941cb85e6e8d"
|
62 |
+
},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"!wget -O - https://kheafield.com/code/kenlm.tar.gz | tar xz"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 3,
|
71 |
+
"metadata": {
|
72 |
+
"colab": {
|
73 |
+
"base_uri": "https://localhost:8080/"
|
74 |
+
},
|
75 |
+
"id": "KGwSg6Bl6a8Y",
|
76 |
+
"outputId": "025562ab-679d-4986-9474-334dc8bd834e"
|
77 |
+
},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"name": "stdout",
|
81 |
+
"output_type": "stream",
|
82 |
+
"text": [
|
83 |
+
"-- The C compiler identification is GNU 7.5.0\n",
|
84 |
+
"-- The CXX compiler identification is GNU 7.5.0\n",
|
85 |
+
"-- Check for working C compiler: /usr/bin/cc\n",
|
86 |
+
"-- Check for working C compiler: /usr/bin/cc -- works\n",
|
87 |
+
"-- Detecting C compiler ABI info\n",
|
88 |
+
"-- Detecting C compiler ABI info - done\n",
|
89 |
+
"-- Detecting C compile features\n",
|
90 |
+
"-- Detecting C compile features - done\n",
|
91 |
+
"-- Check for working CXX compiler: /usr/bin/c++\n",
|
92 |
+
"-- Check for working CXX compiler: /usr/bin/c++ -- works\n",
|
93 |
+
"-- Detecting CXX compiler ABI info\n",
|
94 |
+
"-- Detecting CXX compiler ABI info - done\n",
|
95 |
+
"-- Detecting CXX compile features\n",
|
96 |
+
"-- Detecting CXX compile features - done\n",
|
97 |
+
"-- Looking for pthread.h\n",
|
98 |
+
"-- Looking for pthread.h - found\n",
|
99 |
+
"-- Looking for pthread_create\n",
|
100 |
+
"-- Looking for pthread_create - not found\n",
|
101 |
+
"-- Looking for pthread_create in pthreads\n",
|
102 |
+
"-- Looking for pthread_create in pthreads - not found\n",
|
103 |
+
"-- Looking for pthread_create in pthread\n",
|
104 |
+
"-- Looking for pthread_create in pthread - found\n",
|
105 |
+
"-- Found Threads: TRUE \n",
|
106 |
+
"-- Boost version: 1.65.1\n",
|
107 |
+
"-- Found the following Boost libraries:\n",
|
108 |
+
"-- program_options\n",
|
109 |
+
"-- system\n",
|
110 |
+
"-- thread\n",
|
111 |
+
"-- unit_test_framework\n",
|
112 |
+
"-- chrono\n",
|
113 |
+
"-- date_time\n",
|
114 |
+
"-- atomic\n",
|
115 |
+
"-- Check if compiler accepts -pthread\n",
|
116 |
+
"-- Check if compiler accepts -pthread - yes\n",
|
117 |
+
"-- Found ZLIB: /usr/lib/x86_64-linux-gnu/libz.so (found version \"1.2.11\") \n",
|
118 |
+
"-- Found BZip2: /usr/lib/x86_64-linux-gnu/libbz2.so (found version \"1.0.6\") \n",
|
119 |
+
"-- Looking for BZ2_bzCompressInit\n",
|
120 |
+
"-- Looking for BZ2_bzCompressInit - found\n",
|
121 |
+
"-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
|
122 |
+
"-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
|
123 |
+
"-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
|
124 |
+
"-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
|
125 |
+
"-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
|
126 |
+
"-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
|
127 |
+
"-- Found LibLZMA: /usr/include (found version \"5.2.2\") \n",
|
128 |
+
"-- Found OpenMP_C: -fopenmp (found version \"4.5\") \n",
|
129 |
+
"-- Found OpenMP_CXX: -fopenmp (found version \"4.5\") \n",
|
130 |
+
"-- Found OpenMP: TRUE (found version \"4.5\") \n",
|
131 |
+
"-- Configuring done\n",
|
132 |
+
"-- Generating done\n",
|
133 |
+
"-- Build files have been written to: /content/kenlm/build\n",
|
134 |
+
"\u001b[35m\u001b[1mScanning dependencies of target kenlm_util\u001b[0m\n",
|
135 |
+
"[ 2%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum.cc.o\u001b[0m\n",
|
136 |
+
"[ 2%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum-dtoa.cc.o\u001b[0m\n",
|
137 |
+
"[ 3%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/cached-powers.cc.o\u001b[0m\n",
|
138 |
+
"[ 4%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/diy-fp.cc.o\u001b[0m\n",
|
139 |
+
"[ 5%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/double-conversion.cc.o\u001b[0m\n",
|
140 |
+
"[ 6%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fast-dtoa.cc.o\u001b[0m\n",
|
141 |
+
"[ 7%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fixed-dtoa.cc.o\u001b[0m\n",
|
142 |
+
"[ 8%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/strtod.cc.o\u001b[0m\n",
|
143 |
+
"[ 9%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/chain.cc.o\u001b[0m\n",
|
144 |
+
"[ 10%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/count_records.cc.o\u001b[0m\n",
|
145 |
+
"[ 11%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/io.cc.o\u001b[0m\n",
|
146 |
+
"[ 12%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/line_input.cc.o\u001b[0m\n",
|
147 |
+
"[ 13%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/multi_progress.cc.o\u001b[0m\n",
|
148 |
+
"[ 14%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/rewindable_stream.cc.o\u001b[0m\n",
|
149 |
+
"[ 15%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/bit_packing.cc.o\u001b[0m\n",
|
150 |
+
"[ 16%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/ersatz_progress.cc.o\u001b[0m\n",
|
151 |
+
"[ 17%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/exception.cc.o\u001b[0m\n",
|
152 |
+
"[ 18%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file.cc.o\u001b[0m\n",
|
153 |
+
"[ 19%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file_piece.cc.o\u001b[0m\n",
|
154 |
+
"[ 20%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/float_to_string.cc.o\u001b[0m\n",
|
155 |
+
"[ 21%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/integer_to_string.cc.o\u001b[0m\n",
|
156 |
+
"[ 22%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/mmap.cc.o\u001b[0m\n",
|
157 |
+
"[ 23%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/murmur_hash.cc.o\u001b[0m\n",
|
158 |
+
"[ 25%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/parallel_read.cc.o\u001b[0m\n",
|
159 |
+
"[ 26%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/pool.cc.o\u001b[0m\n",
|
160 |
+
"[ 27%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/read_compressed.cc.o\u001b[0m\n",
|
161 |
+
"[ 28%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/scoped.cc.o\u001b[0m\n",
|
162 |
+
"[ 29%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/spaces.cc.o\u001b[0m\n",
|
163 |
+
"[ 30%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/string_piece.cc.o\u001b[0m\n",
|
164 |
+
"[ 31%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/usage.cc.o\u001b[0m\n",
|
165 |
+
"[ 32%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm_util.a\u001b[0m\n",
|
166 |
+
"[ 32%] Built target kenlm_util\n",
|
167 |
+
"\u001b[35m\u001b[1mScanning dependencies of target probing_hash_table_benchmark\u001b[0m\n",
|
168 |
+
"\u001b[35m\u001b[1mScanning dependencies of target kenlm\u001b[0m\n",
|
169 |
+
"[ 33%] \u001b[32mBuilding CXX object util/CMakeFiles/probing_hash_table_benchmark.dir/probing_hash_table_benchmark_main.cc.o\u001b[0m\n",
|
170 |
+
"[ 34%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/bhiksha.cc.o\u001b[0m\n",
|
171 |
+
"[ 35%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/binary_format.cc.o\u001b[0m\n",
|
172 |
+
"[ 36%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/config.cc.o\u001b[0m\n",
|
173 |
+
"[ 37%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/lm_exception.cc.o\u001b[0m\n",
|
174 |
+
"[ 38%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/model.cc.o\u001b[0m\n",
|
175 |
+
"[ 39%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/quantize.cc.o\u001b[0m\n",
|
176 |
+
"[ 40%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/read_arpa.cc.o\u001b[0m\n",
|
177 |
+
"[ 41%] \u001b[32m\u001b[1mLinking CXX executable ../bin/probing_hash_table_benchmark\u001b[0m\n",
|
178 |
+
"[ 41%] Built target probing_hash_table_benchmark\n",
|
179 |
+
"\u001b[35m\u001b[1mScanning dependencies of target kenlm_filter\u001b[0m\n",
|
180 |
+
"[ 42%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/arpa_io.cc.o\u001b[0m\n",
|
181 |
+
"[ 43%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_hashed.cc.o\u001b[0m\n",
|
182 |
+
"[ 44%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/phrase.cc.o\u001b[0m\n",
|
183 |
+
"[ 45%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_trie.cc.o\u001b[0m\n",
|
184 |
+
"[ 46%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/vocab.cc.o\u001b[0m\n",
|
185 |
+
"[ 47%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_filter.a\u001b[0m\n",
|
186 |
+
"[ 47%] Built target kenlm_filter\n",
|
187 |
+
"[ 48%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/sizes.cc.o\u001b[0m\n",
|
188 |
+
"[ 50%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie.cc.o\u001b[0m\n",
|
189 |
+
"[ 51%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie_sort.cc.o\u001b[0m\n",
|
190 |
+
"[ 52%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/value_build.cc.o\u001b[0m\n",
|
191 |
+
"[ 53%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/virtual_interface.cc.o\u001b[0m\n",
|
192 |
+
"[ 54%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/vocab.cc.o\u001b[0m\n",
|
193 |
+
"[ 55%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/model_buffer.cc.o\u001b[0m\n",
|
194 |
+
"[ 56%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/print.cc.o\u001b[0m\n",
|
195 |
+
"[ 57%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/renumber.cc.o\u001b[0m\n",
|
196 |
+
"[ 58%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/size_option.cc.o\u001b[0m\n",
|
197 |
+
"[ 59%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm.a\u001b[0m\n",
|
198 |
+
"[ 59%] Built target kenlm\n",
|
199 |
+
"\u001b[35m\u001b[1mScanning dependencies of target build_binary\u001b[0m\n",
|
200 |
+
"\u001b[35m\u001b[1mScanning dependencies of target fragment\u001b[0m\n",
|
201 |
+
"[ 60%] \u001b[32mBuilding CXX object lm/CMakeFiles/fragment.dir/fragment_main.cc.o\u001b[0m\n",
|
202 |
+
"[ 61%] \u001b[32mBuilding CXX object lm/CMakeFiles/build_binary.dir/build_binary_main.cc.o\u001b[0m\n",
|
203 |
+
"[ 62%] \u001b[32m\u001b[1mLinking CXX executable ../bin/fragment\u001b[0m\n",
|
204 |
+
"[ 63%] \u001b[32m\u001b[1mLinking CXX executable ../bin/build_binary\u001b[0m\n",
|
205 |
+
"[ 63%] Built target fragment\n",
|
206 |
+
"\u001b[35m\u001b[1mScanning dependencies of target kenlm_benchmark\u001b[0m\n",
|
207 |
+
"[ 64%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm_benchmark.dir/kenlm_benchmark_main.cc.o\u001b[0m\n",
|
208 |
+
"[ 64%] Built target build_binary\n",
|
209 |
+
"\u001b[35m\u001b[1mScanning dependencies of target query\u001b[0m\n",
|
210 |
+
"[ 65%] \u001b[32mBuilding CXX object lm/CMakeFiles/query.dir/query_main.cc.o\u001b[0m\n",
|
211 |
+
"[ 66%] \u001b[32m\u001b[1mLinking CXX executable ../bin/query\u001b[0m\n",
|
212 |
+
"[ 66%] Built target query\n",
|
213 |
+
"\u001b[35m\u001b[1mScanning dependencies of target kenlm_builder\u001b[0m\n",
|
214 |
+
"[ 67%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/adjust_counts.cc.o\u001b[0m\n",
|
215 |
+
"[ 68%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/corpus_count.cc.o\u001b[0m\n",
|
216 |
+
"[ 69%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/initial_probabilities.cc.o\u001b[0m\n",
|
217 |
+
"[ 70%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/interpolate.cc.o\u001b[0m\n",
|
218 |
+
"[ 71%] \u001b[32m\u001b[1mLinking CXX executable ../bin/kenlm_benchmark\u001b[0m\n",
|
219 |
+
"[ 72%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/output.cc.o\u001b[0m\n",
|
220 |
+
"[ 72%] Built target kenlm_benchmark\n",
|
221 |
+
"\u001b[35m\u001b[1mScanning dependencies of target phrase_table_vocab\u001b[0m\n",
|
222 |
+
"[ 73%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/phrase_table_vocab.dir/phrase_table_vocab_main.cc.o\u001b[0m\n",
|
223 |
+
"[ 75%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/phrase_table_vocab\u001b[0m\n",
|
224 |
+
"[ 75%] Built target phrase_table_vocab\n",
|
225 |
+
"\u001b[35m\u001b[1mScanning dependencies of target filter\u001b[0m\n",
|
226 |
+
"[ 76%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/filter.dir/filter_main.cc.o\u001b[0m\n",
|
227 |
+
"[ 77%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/pipeline.cc.o\u001b[0m\n",
|
228 |
+
"[ 78%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_builder.a\u001b[0m\n",
|
229 |
+
"[ 78%] Built target kenlm_builder\n",
|
230 |
+
"\u001b[35m\u001b[1mScanning dependencies of target kenlm_interpolate\u001b[0m\n",
|
231 |
+
"[ 79%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/backoff_reunification.cc.o\u001b[0m\n",
|
232 |
+
"[ 80%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/bounded_sequence_encoding.cc.o\u001b[0m\n",
|
233 |
+
"[ 81%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/merge_probabilities.cc.o\u001b[0m\n",
|
234 |
+
"[ 82%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/filter\u001b[0m\n",
|
235 |
+
"[ 82%] Built target filter\n",
|
236 |
+
"\u001b[35m\u001b[1mScanning dependencies of target count_ngrams\u001b[0m\n",
|
237 |
+
"[ 83%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/count_ngrams.dir/count_ngrams_main.cc.o\u001b[0m\n",
|
238 |
+
"[ 84%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/merge_vocab.cc.o\u001b[0m\n",
|
239 |
+
"[ 85%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/normalize.cc.o\u001b[0m\n",
|
240 |
+
"[ 86%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/pipeline.cc.o\u001b[0m\n",
|
241 |
+
"[ 87%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/count_ngrams\u001b[0m\n",
|
242 |
+
"[ 87%] Built target count_ngrams\n",
|
243 |
+
"\u001b[35m\u001b[1mScanning dependencies of target lmplz\u001b[0m\n",
|
244 |
+
"[ 88%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/lmplz.dir/lmplz_main.cc.o\u001b[0m\n",
|
245 |
+
"[ 89%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/lmplz\u001b[0m\n",
|
246 |
+
"[ 89%] Built target lmplz\n",
|
247 |
+
"[ 90%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/split_worker.cc.o\u001b[0m\n",
|
248 |
+
"[ 91%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_derivatives.cc.o\u001b[0m\n",
|
249 |
+
"[ 92%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_instances.cc.o\u001b[0m\n",
|
250 |
+
"[ 93%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_weights.cc.o\u001b[0m\n",
|
251 |
+
"[ 94%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/universal_vocab.cc.o\u001b[0m\n",
|
252 |
+
"[ 95%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_interpolate.a\u001b[0m\n",
|
253 |
+
"[ 95%] Built target kenlm_interpolate\n",
|
254 |
+
"\u001b[35m\u001b[1mScanning dependencies of target streaming_example\u001b[0m\n",
|
255 |
+
"\u001b[35m\u001b[1mScanning dependencies of target interpolate\u001b[0m\n",
|
256 |
+
"[ 96%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/streaming_example.dir/streaming_example_main.cc.o\u001b[0m\n",
|
257 |
+
"[ 97%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/interpolate.dir/interpolate_main.cc.o\u001b[0m\n",
|
258 |
+
"[ 98%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/interpolate\u001b[0m\n",
|
259 |
+
"[ 98%] Built target interpolate\n",
|
260 |
+
"[100%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/streaming_example\u001b[0m\n",
|
261 |
+
"[100%] Built target streaming_example\n",
|
262 |
+
"build_binary fragment\t lmplz\t\t\t query\n",
|
263 |
+
"count_ngrams interpolate phrase_table_vocab\t streaming_example\n",
|
264 |
+
"filter\t kenlm_benchmark probing_hash_table_benchmark\n"
|
265 |
+
]
|
266 |
+
}
|
267 |
+
],
|
268 |
+
"source": [
|
269 |
+
"!mkdir kenlm/build && cd kenlm/build && cmake .. && make -j2\n",
|
270 |
+
"!ls kenlm/build/bin"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "markdown",
|
275 |
+
"metadata": {
|
276 |
+
"id": "rUUGXbDy6x7r"
|
277 |
+
},
|
278 |
+
"source": [
|
279 |
+
"Install 🤗 dependencies"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": 4,
|
285 |
+
"metadata": {
|
286 |
+
"colab": {
|
287 |
+
"base_uri": "https://localhost:8080/"
|
288 |
+
},
|
289 |
+
"id": "Gs8LAZKr6wF8",
|
290 |
+
"outputId": "2a1785bb-f254-487a-ef4c-e496f037145a"
|
291 |
+
},
|
292 |
+
"outputs": [
|
293 |
+
{
|
294 |
+
"name": "stdout",
|
295 |
+
"output_type": "stream",
|
296 |
+
"text": [
|
297 |
+
"Collecting datasets\n",
|
298 |
+
" Downloading datasets-1.18.0-py3-none-any.whl (311 kB)\n",
|
299 |
+
"\u001b[K |████████████████████████████████| 311 kB 5.3 MB/s \n",
|
300 |
+
"\u001b[?25hCollecting transformers\n",
|
301 |
+
" Downloading transformers-4.15.0-py3-none-any.whl (3.4 MB)\n",
|
302 |
+
"\u001b[K |████████████████████████████████| 3.4 MB 39.8 MB/s \n",
|
303 |
+
"\u001b[?25hRequirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (2.23.0)\n",
|
304 |
+
"Collecting aiohttp\n",
|
305 |
+
" Downloading aiohttp-3.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n",
|
306 |
+
"\u001b[K |████████████████████████████████| 1.1 MB 54.7 MB/s \n",
|
307 |
+
"\u001b[?25hRequirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (3.0.0)\n",
|
308 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from datasets) (1.19.5)\n",
|
309 |
+
"Collecting xxhash\n",
|
310 |
+
" Downloading xxhash-2.0.2-cp37-cp37m-manylinux2010_x86_64.whl (243 kB)\n",
|
311 |
+
"\u001b[K |████████████████████████████████| 243 kB 41.5 MB/s \n",
|
312 |
+
"\u001b[?25hRequirement already satisfied: dill in /usr/local/lib/python3.7/dist-packages (from datasets) (0.3.4)\n",
|
313 |
+
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.7/dist-packages (from datasets) (4.62.3)\n",
|
314 |
+
"Collecting huggingface-hub<1.0.0,>=0.1.0\n",
|
315 |
+
" Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)\n",
|
316 |
+
"\u001b[K |████████████████████████████████| 67 kB 5.1 MB/s \n",
|
317 |
+
"\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from datasets) (21.3)\n",
|
318 |
+
"Collecting fsspec[http]>=2021.05.0\n",
|
319 |
+
" Downloading fsspec-2022.1.0-py3-none-any.whl (133 kB)\n",
|
320 |
+
"\u001b[K |████████████████████████████████| 133 kB 50.2 MB/s \n",
|
321 |
+
"\u001b[?25hRequirement already satisfied: multiprocess in /usr/local/lib/python3.7/dist-packages (from datasets) (0.70.12.2)\n",
|
322 |
+
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from datasets) (4.10.0)\n",
|
323 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from datasets) (1.1.5)\n",
|
324 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.4.2)\n",
|
325 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.10.0.2)\n",
|
326 |
+
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.13)\n",
|
327 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->datasets) (3.0.6)\n",
|
328 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (3.0.4)\n",
|
329 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (1.24.3)\n",
|
330 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2021.10.8)\n",
|
331 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2.10)\n",
|
332 |
+
"Collecting pyyaml\n",
|
333 |
+
" Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)\n",
|
334 |
+
"\u001b[K |████████████████████████████████| 596 kB 56.2 MB/s \n",
|
335 |
+
"\u001b[?25hCollecting tokenizers<0.11,>=0.10.1\n",
|
336 |
+
" Downloading tokenizers-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.3 MB)\n",
|
337 |
+
"\u001b[K |████████████████████████████████| 3.3 MB 46.1 MB/s \n",
|
338 |
+
"\u001b[?25hCollecting sacremoses\n",
|
339 |
+
" Downloading sacremoses-0.0.47-py2.py3-none-any.whl (895 kB)\n",
|
340 |
+
"\u001b[K |████████████████████████████████| 895 kB 51.6 MB/s \n",
|
341 |
+
"\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)\n",
|
342 |
+
"Collecting frozenlist>=1.1.1\n",
|
343 |
+
" Downloading frozenlist-1.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144 kB)\n",
|
344 |
+
"\u001b[K |████████████████████████████████| 144 kB 51.5 MB/s \n",
|
345 |
+
"\u001b[?25hCollecting yarl<2.0,>=1.0\n",
|
346 |
+
" Downloading yarl-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (271 kB)\n",
|
347 |
+
"\u001b[K |████████████████████████████████| 271 kB 56.7 MB/s \n",
|
348 |
+
"\u001b[?25hCollecting asynctest==0.13.0\n",
|
349 |
+
" Downloading asynctest-0.13.0-py3-none-any.whl (26 kB)\n",
|
350 |
+
"Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (2.0.10)\n",
|
351 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (21.4.0)\n",
|
352 |
+
"Collecting multidict<7.0,>=4.5\n",
|
353 |
+
" Downloading multidict-6.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (94 kB)\n",
|
354 |
+
"\u001b[K |████████████████████████████████| 94 kB 3.0 MB/s \n",
|
355 |
+
"\u001b[?25hCollecting aiosignal>=1.1.2\n",
|
356 |
+
" Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n",
|
357 |
+
"Collecting async-timeout<5.0,>=4.0.0a3\n",
|
358 |
+
" Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
|
359 |
+
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->datasets) (3.7.0)\n",
|
360 |
+
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2018.9)\n",
|
361 |
+
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2.8.2)\n",
|
362 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n",
|
363 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2)\n",
|
364 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.1.0)\n",
|
365 |
+
"Installing collected packages: multidict, frozenlist, yarl, asynctest, async-timeout, aiosignal, pyyaml, fsspec, aiohttp, xxhash, tokenizers, sacremoses, huggingface-hub, transformers, datasets\n",
|
366 |
+
" Attempting uninstall: pyyaml\n",
|
367 |
+
" Found existing installation: PyYAML 3.13\n",
|
368 |
+
" Uninstalling PyYAML-3.13:\n",
|
369 |
+
" Successfully uninstalled PyYAML-3.13\n",
|
370 |
+
"Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 async-timeout-4.0.2 asynctest-0.13.0 datasets-1.18.0 frozenlist-1.3.0 fsspec-2022.1.0 huggingface-hub-0.4.0 multidict-6.0.2 pyyaml-6.0 sacremoses-0.0.47 tokenizers-0.10.3 transformers-4.15.0 xxhash-2.0.2 yarl-1.7.2\n"
|
371 |
+
]
|
372 |
+
}
|
373 |
+
],
|
374 |
+
"source": [
|
375 |
+
"!pip install datasets transformers"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"cell_type": "markdown",
|
380 |
+
"metadata": {
|
381 |
+
"id": "6RoHBmOz66fz"
|
382 |
+
},
|
383 |
+
"source": [
|
384 |
+
"Load preprocessed dataset from 🤗 and write it to file as required by KenLM"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"cell_type": "code",
|
389 |
+
"execution_count": 5,
|
390 |
+
"metadata": {
|
391 |
+
"colab": {
|
392 |
+
"base_uri": "https://localhost:8080/",
|
393 |
+
"height": 216,
|
394 |
+
"referenced_widgets": [
|
395 |
+
"ad5d7b0bc9ad4e228b3bc76bc975cc47",
|
396 |
+
"5925567ffea2436691c4ed3b7b147c17",
|
397 |
+
"799acae3451445f0a3616b8932f2e3f3",
|
398 |
+
"1714ea91694842339756f26b2fa9c725",
|
399 |
+
"b5d6b069468246abbb3207f3df6f9dde",
|
400 |
+
"5a9c9d4b60e54a3bb64c576707bd9736",
|
401 |
+
"789d5845a82e48fe9c629af743b5b1f0",
|
402 |
+
"e3414cc0456241eca109f4e9e115d16a",
|
403 |
+
"d3e6acd54d024d6791aab76232557721",
|
404 |
+
"6b43ea2d93c04965a4539b3ef839893b",
|
405 |
+
"4958b4c72d0c48af9a77974fc4ed449c",
|
406 |
+
"d722bbfffeaf4ea7a1060d10dc3a06db",
|
407 |
+
"e81b0bf92adc4aadaafce4ee7d36421e",
|
408 |
+
"a4b5b93b88f549e8a4f37f3d48834ca9",
|
409 |
+
"82692c41501c487fad27c6b19836f46f",
|
410 |
+
"af8f433ef2f540c9bd70d14421904d83",
|
411 |
+
"5e469744bf6a4813983ae8ee727c1c5e",
|
412 |
+
"34c5f87238cb4f13a03b207aa7dc1d18",
|
413 |
+
"c7955974289a4f448b422d7e4640131a",
|
414 |
+
"db7ee45589e04749b80376e25ee377bb",
|
415 |
+
"34d9460b112c419885bbff5211674cb3",
|
416 |
+
"033cb43d32314d279a7b9e1e86bbccdc",
|
417 |
+
"6a7e3547dc4141e7b5937f2baff58cbf",
|
418 |
+
"921a3c1f50a24979838fd560c2cea9e0",
|
419 |
+
"e33033ecda374ed4966ae5fccf6efe37",
|
420 |
+
"52a852c0f98c49aa9e5edfdd4f91e4ca",
|
421 |
+
"d1ff84cb5591449abcc7dd3e37f9a2df",
|
422 |
+
"f479a9629c414cb495a97b0741b0fe4b",
|
423 |
+
"a41cf7f5121a4068842bb5c7d2bc4d62",
|
424 |
+
"31b2d7d8d9054c8fb47bf1b58043aee1",
|
425 |
+
"23c9da8dd7bf4be9a23357806ebfc036",
|
426 |
+
"e084d47529ca4131b233ea3514a6344f",
|
427 |
+
"a6e3c5ce0a3c49ffb3d7cbf92568fe47",
|
428 |
+
"a1eca879a11f414f8173b0c2c260f4c3",
|
429 |
+
"75130a60f93b49c8bee0986665121d02",
|
430 |
+
"328cea1a2aac4fb58bceeaf126b99371",
|
431 |
+
"662d61fdd89d434785e74a7038427fbc",
|
432 |
+
"670d4f16a7e44144afc0ac70eea59325",
|
433 |
+
"7f92331b29fd49a68815b6d7389c1005",
|
434 |
+
"c710ba94fd65486cbcbe1d402919e27f",
|
435 |
+
"5951d1bafdd548b6b835b28cf9960533",
|
436 |
+
"adcffda7f78c4a1c8bdc6010c8704292",
|
437 |
+
"2c37aaee1f524837b477dc584209733a",
|
438 |
+
"0bee4735e017471fa8679ad984b88633"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
"id": "0bDpNg9c6mUu",
|
442 |
+
"outputId": "677d294f-2e37-48d5-bab0-6e21d1b4fe30"
|
443 |
+
},
|
444 |
+
"outputs": [
|
445 |
+
{
|
446 |
+
"data": {
|
447 |
+
"application/vnd.jupyter.widget-view+json": {
|
448 |
+
"model_id": "ad5d7b0bc9ad4e228b3bc76bc975cc47",
|
449 |
+
"version_major": 2,
|
450 |
+
"version_minor": 0
|
451 |
+
},
|
452 |
+
"text/plain": [
|
453 |
+
"Downloading: 0%| | 0.00/1.16k [00:00<?, ?B/s]"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
"metadata": {},
|
457 |
+
"output_type": "display_data"
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"name": "stderr",
|
461 |
+
"output_type": "stream",
|
462 |
+
"text": [
|
463 |
+
"Using custom data configuration hf-test--swedish_corpora_parliament_processed-56ded20e2faa0852\n"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"name": "stdout",
|
468 |
+
"output_type": "stream",
|
469 |
+
"text": [
|
470 |
+
"Downloading and preparing dataset europarl_bilingual/en-sv (download: 151.40 MiB, generated: 278.82 MiB, post-processed: Unknown size, total: 430.21 MiB) to /root/.cache/huggingface/datasets/parquet/hf-test--swedish_corpora_parliament_processed-56ded20e2faa0852/0.0.0/1638526fd0e8d960534e2155dc54fdff8dce73851f21f031d2fb9c2cf757c121...\n"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"data": {
|
475 |
+
"application/vnd.jupyter.widget-view+json": {
|
476 |
+
"model_id": "d722bbfffeaf4ea7a1060d10dc3a06db",
|
477 |
+
"version_major": 2,
|
478 |
+
"version_minor": 0
|
479 |
+
},
|
480 |
+
"text/plain": [
|
481 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
"metadata": {},
|
485 |
+
"output_type": "display_data"
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"data": {
|
489 |
+
"application/vnd.jupyter.widget-view+json": {
|
490 |
+
"model_id": "6a7e3547dc4141e7b5937f2baff58cbf",
|
491 |
+
"version_major": 2,
|
492 |
+
"version_minor": 0
|
493 |
+
},
|
494 |
+
"text/plain": [
|
495 |
+
"Downloading: 0%| | 0.00/159M [00:00<?, ?B/s]"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
"metadata": {},
|
499 |
+
"output_type": "display_data"
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"data": {
|
503 |
+
"application/vnd.jupyter.widget-view+json": {
|
504 |
+
"model_id": "a1eca879a11f414f8173b0c2c260f4c3",
|
505 |
+
"version_major": 2,
|
506 |
+
"version_minor": 0
|
507 |
+
},
|
508 |
+
"text/plain": [
|
509 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
"metadata": {},
|
513 |
+
"output_type": "display_data"
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"name": "stdout",
|
517 |
+
"output_type": "stream",
|
518 |
+
"text": [
|
519 |
+
"Dataset parquet downloaded and prepared to /root/.cache/huggingface/datasets/parquet/hf-test--swedish_corpora_parliament_processed-56ded20e2faa0852/0.0.0/1638526fd0e8d960534e2155dc54fdff8dce73851f21f031d2fb9c2cf757c121. Subsequent calls will reuse this data.\n"
|
520 |
+
]
|
521 |
+
}
|
522 |
+
],
|
523 |
+
"source": [
|
524 |
+
"from datasets import load_dataset\n",
|
525 |
+
"\n",
|
526 |
+
"# change to your dataset path\n",
|
527 |
+
"username = \"hf-test\" \n",
|
528 |
+
"target_lang = \"sv\"\n",
|
529 |
+
"\n",
|
530 |
+
"dataset = load_dataset(f\"{username}/{target_lang}_corpora_parliament_processed\", split=\"train\")\n",
|
531 |
+
"\n",
|
532 |
+
"with open(\"text.txt\", \"w\") as file:\n",
|
533 |
+
" file.write(\" \".join(dataset[\"text\"]))"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"cell_type": "markdown",
|
538 |
+
"metadata": {
|
539 |
+
"id": "z8PqeGC17jD8"
|
540 |
+
},
|
541 |
+
"source": [
|
542 |
+
"Train 5-gram language model"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"cell_type": "code",
|
547 |
+
"execution_count": 6,
|
548 |
+
"metadata": {
|
549 |
+
"colab": {
|
550 |
+
"base_uri": "https://localhost:8080/"
|
551 |
+
},
|
552 |
+
"id": "_8KoINuj7h-1",
|
553 |
+
"outputId": "26e0622d-6cb6-4329-e722-91ae9df263c7"
|
554 |
+
},
|
555 |
+
"outputs": [
|
556 |
+
{
|
557 |
+
"name": "stdout",
|
558 |
+
"output_type": "stream",
|
559 |
+
"text": [
|
560 |
+
"=== 1/5 Counting and sorting n-grams ===\n",
|
561 |
+
"Reading /content/text.txt\n",
|
562 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
563 |
+
"tcmalloc: large alloc 1918697472 bytes == 0x5623caa4e000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8cec51e 0x5623c8ccb2eb 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
|
564 |
+
"tcmalloc: large alloc 8953896960 bytes == 0x56243d01e000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccb308 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
|
565 |
+
"****************************************************************************************************\n",
|
566 |
+
"Unigram tokens 42153890 types 360209\n",
|
567 |
+
"=== 2/5 Calculating and sorting adjusted counts ===\n",
|
568 |
+
"Chain sizes: 1:4322508 2:1062773568 3:1992700672 4:3188320768 5:4649634816\n",
|
569 |
+
"tcmalloc: large alloc 4649639936 bytes == 0x5623caa4e000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccb8d7 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
|
570 |
+
"tcmalloc: large alloc 1992704000 bytes == 0x56251f640000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccbcdd 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
|
571 |
+
"tcmalloc: large alloc 3188326400 bytes == 0x5626533e4000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccbcdd 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
|
572 |
+
"Statistics:\n",
|
573 |
+
"1 360208 D1=0.686222 D2=1.01595 D3+=1.33685\n",
|
574 |
+
"2 5476741 D1=0.761523 D2=1.06735 D3+=1.32559\n",
|
575 |
+
"3 18177681 D1=0.839918 D2=1.12061 D3+=1.33794\n",
|
576 |
+
"4 30374983 D1=0.909146 D2=1.20496 D3+=1.37235\n",
|
577 |
+
"5 37231651 D1=0.944104 D2=1.25164 D3+=1.344\n",
|
578 |
+
"Memory estimate for binary LM:\n",
|
579 |
+
"type MB\n",
|
580 |
+
"probing 1884 assuming -p 1.5\n",
|
581 |
+
"probing 2195 assuming -r models -p 1.5\n",
|
582 |
+
"trie 922 without quantization\n",
|
583 |
+
"trie 518 assuming -q 8 -b 8 quantization \n",
|
584 |
+
"trie 806 assuming -a 22 array pointer compression\n",
|
585 |
+
"trie 401 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
|
586 |
+
"=== 3/5 Calculating and sorting initial probabilities ===\n",
|
587 |
+
"Chain sizes: 1:4322496 2:87627856 3:363553620 4:728999592 5:1042486228\n",
|
588 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
589 |
+
"####################################################################################################\n",
|
590 |
+
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
|
591 |
+
"Chain sizes: 1:4322496 2:87627856 3:363553620 4:728999592 5:1042486228\n",
|
592 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
593 |
+
"####################################################################################################\n",
|
594 |
+
"=== 5/5 Writing ARPA model ===\n",
|
595 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
596 |
+
"****************************************************************************************************\n",
|
597 |
+
"Name:lmplz\tVmPeak:14181536 kB\tVmRSS:2199072 kB\tRSSMax:4117540 kB\tuser:125.411\tsys:25.1745\tCPU:150.586\treal:290.479\n"
|
598 |
+
]
|
599 |
+
}
|
600 |
+
],
|
601 |
+
"source": [
|
602 |
+
"!kenlm/build/bin/lmplz -o 5 <\"text.txt\" > \"5gram.arpa\""
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"cell_type": "markdown",
|
607 |
+
"metadata": {
|
608 |
+
"id": "ZJ5OKh358nwR"
|
609 |
+
},
|
610 |
+
"source": [
|
611 |
+
"Check head of file"
|
612 |
+
]
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"cell_type": "code",
|
616 |
+
"execution_count": 7,
|
617 |
+
"metadata": {
|
618 |
+
"colab": {
|
619 |
+
"base_uri": "https://localhost:8080/"
|
620 |
+
},
|
621 |
+
"id": "pv93ZCR68s4m",
|
622 |
+
"outputId": "9489b8a8-789d-4779-85f4-f4aa4e0b3392"
|
623 |
+
},
|
624 |
+
"outputs": [
|
625 |
+
{
|
626 |
+
"name": "stdout",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"\\data\\\n",
|
630 |
+
"ngram 1=360208\n",
|
631 |
+
"ngram 2=5476741\n",
|
632 |
+
"ngram 3=18177681\n",
|
633 |
+
"ngram 4=30374983\n",
|
634 |
+
"ngram 5=37231651\n",
|
635 |
+
"\n",
|
636 |
+
"\\1-grams:\n",
|
637 |
+
"-6.770219\t<unk>\t0\n",
|
638 |
+
"0\t<s>\t-0.11831701\n",
|
639 |
+
"-4.6095004\tåterupptagande\t-1.2174699\n",
|
640 |
+
"-2.2361007\tav\t-0.79668784\n",
|
641 |
+
"-4.8163533\tsessionen\t-0.37327805\n",
|
642 |
+
"-2.2251768\tjag\t-1.4205662\n",
|
643 |
+
"-4.181505\tförklarar\t-0.56261665\n",
|
644 |
+
"-3.5790775\teuropaparlamentets\t-0.63611007\n",
|
645 |
+
"-4.771945\tsession\t-0.3647111\n",
|
646 |
+
"-5.8043895\tåterupptagen\t-0.3058712\n",
|
647 |
+
"-2.8580177\tefter\t-0.7557702\n",
|
648 |
+
"-5.199537\tavbrottet\t-0.43322718\n"
|
649 |
+
]
|
650 |
+
}
|
651 |
+
],
|
652 |
+
"source": [
|
653 |
+
"!head -20 5gram.arpa"
|
654 |
+
]
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"cell_type": "markdown",
|
658 |
+
"metadata": {
|
659 |
+
"id": "FEcPijF77mPY"
|
660 |
+
},
|
661 |
+
"source": [
|
662 |
+
"Add end-of-sentence token \"\\</s>\" "
|
663 |
+
]
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "code",
|
667 |
+
"execution_count": 8,
|
668 |
+
"metadata": {
|
669 |
+
"id": "Sktd-U5a7yZL"
|
670 |
+
},
|
671 |
+
"outputs": [],
|
672 |
+
"source": [
|
673 |
+
"with open(\"5gram.arpa\", \"r\") as read_file, open(\"5gram_sv_lm.arpa\", \"w\") as write_file:\n",
|
674 |
+
" has_added_eos = False\n",
|
675 |
+
" for line in read_file:\n",
|
676 |
+
" if not has_added_eos and \"ngram 1=\" in line:\n",
|
677 |
+
" count=line.strip().split(\"=\")[-1]\n",
|
678 |
+
" write_file.write(line.replace(f\"{count}\", f\"{int(count)+1}\"))\n",
|
679 |
+
" elif not has_added_eos and \"<s>\" in line:\n",
|
680 |
+
" write_file.write(line)\n",
|
681 |
+
" write_file.write(line.replace(\"<s>\", \"</s>\"))\n",
|
682 |
+
" has_added_eos = True\n",
|
683 |
+
" else:\n",
|
684 |
+
" write_file.write(line)"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"cell_type": "markdown",
|
689 |
+
"metadata": {
|
690 |
+
"id": "hqXHYY-K760Q"
|
691 |
+
},
|
692 |
+
"source": [
|
693 |
+
"Check head of file"
|
694 |
+
]
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"cell_type": "code",
|
698 |
+
"execution_count": 9,
|
699 |
+
"metadata": {
|
700 |
+
"colab": {
|
701 |
+
"base_uri": "https://localhost:8080/"
|
702 |
+
},
|
703 |
+
"id": "0QuHk3AY8Hax",
|
704 |
+
"outputId": "090d065f-95c7-48e5-bc0c-01069f69c619"
|
705 |
+
},
|
706 |
+
"outputs": [
|
707 |
+
{
|
708 |
+
"name": "stdout",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"\\data\\\n",
|
712 |
+
"ngram 1=360209\n",
|
713 |
+
"ngram 2=5476741\n",
|
714 |
+
"ngram 3=18177681\n",
|
715 |
+
"ngram 4=30374983\n",
|
716 |
+
"ngram 5=37231651\n",
|
717 |
+
"\n",
|
718 |
+
"\\1-grams:\n",
|
719 |
+
"-6.770219\t<unk>\t0\n",
|
720 |
+
"0\t<s>\t-0.11831701\n",
|
721 |
+
"0\t</s>\t-0.11831701\n",
|
722 |
+
"-4.6095004\tåterupptagande\t-1.2174699\n",
|
723 |
+
"-2.2361007\tav\t-0.79668784\n",
|
724 |
+
"-4.8163533\tsessionen\t-0.37327805\n",
|
725 |
+
"-2.2251768\tjag\t-1.4205662\n",
|
726 |
+
"-4.181505\tförklarar\t-0.56261665\n",
|
727 |
+
"-3.5790775\teuropaparlamentets\t-0.63611007\n",
|
728 |
+
"-4.771945\tsession\t-0.3647111\n",
|
729 |
+
"-5.8043895\tåterupptagen\t-0.3058712\n",
|
730 |
+
"-2.8580177\tefter\t-0.7557702\n"
|
731 |
+
]
|
732 |
+
}
|
733 |
+
],
|
734 |
+
"source": [
|
735 |
+
"!head -20 5gram_sv_lm.arpa"
|
736 |
+
]
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"cell_type": "markdown",
|
740 |
+
"metadata": {
|
741 |
+
"id": "kTvRntrZ9-uq"
|
742 |
+
},
|
743 |
+
"source": [
|
744 |
+
"Compress arpa file by converting it to bin"
|
745 |
+
]
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"cell_type": "code",
|
749 |
+
"execution_count": 11,
|
750 |
+
"metadata": {
|
751 |
+
"colab": {
|
752 |
+
"base_uri": "https://localhost:8080/"
|
753 |
+
},
|
754 |
+
"id": "DnmOlNZ5-ClT",
|
755 |
+
"outputId": "c380c05a-e335-4e9d-98b2-c015645a2d40"
|
756 |
+
},
|
757 |
+
"outputs": [
|
758 |
+
{
|
759 |
+
"name": "stdout",
|
760 |
+
"output_type": "stream",
|
761 |
+
"text": [
|
762 |
+
"Reading 5gram_sv_lm.arpa\n",
|
763 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
764 |
+
"****************************************************************************************************\n",
|
765 |
+
"SUCCESS\n"
|
766 |
+
]
|
767 |
+
}
|
768 |
+
],
|
769 |
+
"source": [
|
770 |
+
"!kenlm/build/bin/build_binary 5gram_sv_lm.arpa 5gram_sv_lm.bin"
|
771 |
+
]
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"cell_type": "markdown",
|
775 |
+
"metadata": {
|
776 |
+
"id": "Xra-pM-M8MZj"
|
777 |
+
},
|
778 |
+
"source": [
|
779 |
+
"Download file to local machine (use Chrome if it fails on another browser)."
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": 12,
|
785 |
+
"metadata": {
|
786 |
+
"colab": {
|
787 |
+
"base_uri": "https://localhost:8080/",
|
788 |
+
"height": 34
|
789 |
+
},
|
790 |
+
"id": "M7b5x8Hr8Yuo",
|
791 |
+
"outputId": "5fbedff6-4a41-47c5-903c-2ad3b59983e1"
|
792 |
+
},
|
793 |
+
"outputs": [
|
794 |
+
{
|
795 |
+
"data": {
|
796 |
+
"application/javascript": [
|
797 |
+
"\n",
|
798 |
+
" async function download(id, filename, size) {\n",
|
799 |
+
" if (!google.colab.kernel.accessAllowed) {\n",
|
800 |
+
" return;\n",
|
801 |
+
" }\n",
|
802 |
+
" const div = document.createElement('div');\n",
|
803 |
+
" const label = document.createElement('label');\n",
|
804 |
+
" label.textContent = `Downloading \"${filename}\": `;\n",
|
805 |
+
" div.appendChild(label);\n",
|
806 |
+
" const progress = document.createElement('progress');\n",
|
807 |
+
" progress.max = size;\n",
|
808 |
+
" div.appendChild(progress);\n",
|
809 |
+
" document.body.appendChild(div);\n",
|
810 |
+
"\n",
|
811 |
+
" const buffers = [];\n",
|
812 |
+
" let downloaded = 0;\n",
|
813 |
+
"\n",
|
814 |
+
" const channel = await google.colab.kernel.comms.open(id);\n",
|
815 |
+
" // Send a message to notify the kernel that we're ready.\n",
|
816 |
+
" channel.send({})\n",
|
817 |
+
"\n",
|
818 |
+
" for await (const message of channel.messages) {\n",
|
819 |
+
" // Send a message to notify the kernel that we're ready.\n",
|
820 |
+
" channel.send({})\n",
|
821 |
+
" if (message.buffers) {\n",
|
822 |
+
" for (const buffer of message.buffers) {\n",
|
823 |
+
" buffers.push(buffer);\n",
|
824 |
+
" downloaded += buffer.byteLength;\n",
|
825 |
+
" progress.value = downloaded;\n",
|
826 |
+
" }\n",
|
827 |
+
" }\n",
|
828 |
+
" }\n",
|
829 |
+
" const blob = new Blob(buffers, {type: 'application/binary'});\n",
|
830 |
+
" const a = document.createElement('a');\n",
|
831 |
+
" a.href = window.URL.createObjectURL(blob);\n",
|
832 |
+
" a.download = filename;\n",
|
833 |
+
" div.appendChild(a);\n",
|
834 |
+
" a.click();\n",
|
835 |
+
" div.remove();\n",
|
836 |
+
" }\n",
|
837 |
+
" "
|
838 |
+
],
|
839 |
+
"text/plain": [
|
840 |
+
"<IPython.core.display.Javascript object>"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
"metadata": {},
|
844 |
+
"output_type": "display_data"
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"data": {
|
848 |
+
"application/javascript": [
|
849 |
+
"download(\"download_82154b0d-c2b7-4fbd-8f04-e987f3406e7e\", \"5gram_sv_lm.bin\", 1981380707)"
|
850 |
+
],
|
851 |
+
"text/plain": [
|
852 |
+
"<IPython.core.display.Javascript object>"
|
853 |
+
]
|
854 |
+
},
|
855 |
+
"metadata": {},
|
856 |
+
"output_type": "display_data"
|
857 |
+
}
|
858 |
+
],
|
859 |
+
"source": [
|
860 |
+
"from google.colab import files\n",
|
861 |
+
"files.download(\"5gram_sv_lm.bin\") "
|
862 |
+
]
|
863 |
+
}
|
864 |
+
],
|
865 |
+
"metadata": {
|
866 |
+
"colab": {
|
867 |
+
"name": "train_n-gram_lm_with_KenLM",
|
868 |
+
"provenance": []
|
869 |
+
},
|
870 |
+
"kernelspec": {
|
871 |
+
"display_name": "Python 3 (ipykernel)",
|
872 |
+
"language": "python",
|
873 |
+
"name": "python3"
|
874 |
+
},
|
875 |
+
"language_info": {
|
876 |
+
"codemirror_mode": {
|
877 |
+
"name": "ipython",
|
878 |
+
"version": 3
|
879 |
+
},
|
880 |
+
"file_extension": ".py",
|
881 |
+
"mimetype": "text/x-python",
|
882 |
+
"name": "python",
|
883 |
+
"nbconvert_exporter": "python",
|
884 |
+
"pygments_lexer": "ipython3",
|
885 |
+
"version": "3.8.6"
|
886 |
+
},
|
887 |
+
"widgets": {
|
888 |
+
"application/vnd.jupyter.widget-state+json": {
|
889 |
+
"033cb43d32314d279a7b9e1e86bbccdc": {
|
890 |
+
"model_module": "@jupyter-widgets/base",
|
891 |
+
"model_module_version": "1.2.0",
|
892 |
+
"model_name": "LayoutModel",
|
893 |
+
"state": {
|
894 |
+
"_model_module": "@jupyter-widgets/base",
|
895 |
+
"_model_module_version": "1.2.0",
|
896 |
+
"_model_name": "LayoutModel",
|
897 |
+
"_view_count": null,
|
898 |
+
"_view_module": "@jupyter-widgets/base",
|
899 |
+
"_view_module_version": "1.2.0",
|
900 |
+
"_view_name": "LayoutView",
|
901 |
+
"align_content": null,
|
902 |
+
"align_items": null,
|
903 |
+
"align_self": null,
|
904 |
+
"border": null,
|
905 |
+
"bottom": null,
|
906 |
+
"display": null,
|
907 |
+
"flex": null,
|
908 |
+
"flex_flow": null,
|
909 |
+
"grid_area": null,
|
910 |
+
"grid_auto_columns": null,
|
911 |
+
"grid_auto_flow": null,
|
912 |
+
"grid_auto_rows": null,
|
913 |
+
"grid_column": null,
|
914 |
+
"grid_gap": null,
|
915 |
+
"grid_row": null,
|
916 |
+
"grid_template_areas": null,
|
917 |
+
"grid_template_columns": null,
|
918 |
+
"grid_template_rows": null,
|
919 |
+
"height": null,
|
920 |
+
"justify_content": null,
|
921 |
+
"justify_items": null,
|
922 |
+
"left": null,
|
923 |
+
"margin": null,
|
924 |
+
"max_height": null,
|
925 |
+
"max_width": null,
|
926 |
+
"min_height": null,
|
927 |
+
"min_width": null,
|
928 |
+
"object_fit": null,
|
929 |
+
"object_position": null,
|
930 |
+
"order": null,
|
931 |
+
"overflow": null,
|
932 |
+
"overflow_x": null,
|
933 |
+
"overflow_y": null,
|
934 |
+
"padding": null,
|
935 |
+
"right": null,
|
936 |
+
"top": null,
|
937 |
+
"visibility": null,
|
938 |
+
"width": null
|
939 |
+
}
|
940 |
+
},
|
941 |
+
"0bee4735e017471fa8679ad984b88633": {
|
942 |
+
"model_module": "@jupyter-widgets/base",
|
943 |
+
"model_module_version": "1.2.0",
|
944 |
+
"model_name": "LayoutModel",
|
945 |
+
"state": {
|
946 |
+
"_model_module": "@jupyter-widgets/base",
|
947 |
+
"_model_module_version": "1.2.0",
|
948 |
+
"_model_name": "LayoutModel",
|
949 |
+
"_view_count": null,
|
950 |
+
"_view_module": "@jupyter-widgets/base",
|
951 |
+
"_view_module_version": "1.2.0",
|
952 |
+
"_view_name": "LayoutView",
|
953 |
+
"align_content": null,
|
954 |
+
"align_items": null,
|
955 |
+
"align_self": null,
|
956 |
+
"border": null,
|
957 |
+
"bottom": null,
|
958 |
+
"display": null,
|
959 |
+
"flex": null,
|
960 |
+
"flex_flow": null,
|
961 |
+
"grid_area": null,
|
962 |
+
"grid_auto_columns": null,
|
963 |
+
"grid_auto_flow": null,
|
964 |
+
"grid_auto_rows": null,
|
965 |
+
"grid_column": null,
|
966 |
+
"grid_gap": null,
|
967 |
+
"grid_row": null,
|
968 |
+
"grid_template_areas": null,
|
969 |
+
"grid_template_columns": null,
|
970 |
+
"grid_template_rows": null,
|
971 |
+
"height": null,
|
972 |
+
"justify_content": null,
|
973 |
+
"justify_items": null,
|
974 |
+
"left": null,
|
975 |
+
"margin": null,
|
976 |
+
"max_height": null,
|
977 |
+
"max_width": null,
|
978 |
+
"min_height": null,
|
979 |
+
"min_width": null,
|
980 |
+
"object_fit": null,
|
981 |
+
"object_position": null,
|
982 |
+
"order": null,
|
983 |
+
"overflow": null,
|
984 |
+
"overflow_x": null,
|
985 |
+
"overflow_y": null,
|
986 |
+
"padding": null,
|
987 |
+
"right": null,
|
988 |
+
"top": null,
|
989 |
+
"visibility": null,
|
990 |
+
"width": null
|
991 |
+
}
|
992 |
+
},
|
993 |
+
"1714ea91694842339756f26b2fa9c725": {
|
994 |
+
"model_module": "@jupyter-widgets/controls",
|
995 |
+
"model_module_version": "1.5.0",
|
996 |
+
"model_name": "FloatProgressModel",
|
997 |
+
"state": {
|
998 |
+
"_dom_classes": [],
|
999 |
+
"_model_module": "@jupyter-widgets/controls",
|
1000 |
+
"_model_module_version": "1.5.0",
|
1001 |
+
"_model_name": "FloatProgressModel",
|
1002 |
+
"_view_count": null,
|
1003 |
+
"_view_module": "@jupyter-widgets/controls",
|
1004 |
+
"_view_module_version": "1.5.0",
|
1005 |
+
"_view_name": "ProgressView",
|
1006 |
+
"bar_style": "success",
|
1007 |
+
"description": "",
|
1008 |
+
"description_tooltip": null,
|
1009 |
+
"layout": "IPY_MODEL_d3e6acd54d024d6791aab76232557721",
|
1010 |
+
"max": 1157,
|
1011 |
+
"min": 0,
|
1012 |
+
"orientation": "horizontal",
|
1013 |
+
"style": "IPY_MODEL_e3414cc0456241eca109f4e9e115d16a",
|
1014 |
+
"value": 1157
|
1015 |
+
}
|
1016 |
+
},
|
1017 |
+
"23c9da8dd7bf4be9a23357806ebfc036": {
|
1018 |
+
"model_module": "@jupyter-widgets/base",
|
1019 |
+
"model_module_version": "1.2.0",
|
1020 |
+
"model_name": "LayoutModel",
|
1021 |
+
"state": {
|
1022 |
+
"_model_module": "@jupyter-widgets/base",
|
1023 |
+
"_model_module_version": "1.2.0",
|
1024 |
+
"_model_name": "LayoutModel",
|
1025 |
+
"_view_count": null,
|
1026 |
+
"_view_module": "@jupyter-widgets/base",
|
1027 |
+
"_view_module_version": "1.2.0",
|
1028 |
+
"_view_name": "LayoutView",
|
1029 |
+
"align_content": null,
|
1030 |
+
"align_items": null,
|
1031 |
+
"align_self": null,
|
1032 |
+
"border": null,
|
1033 |
+
"bottom": null,
|
1034 |
+
"display": null,
|
1035 |
+
"flex": null,
|
1036 |
+
"flex_flow": null,
|
1037 |
+
"grid_area": null,
|
1038 |
+
"grid_auto_columns": null,
|
1039 |
+
"grid_auto_flow": null,
|
1040 |
+
"grid_auto_rows": null,
|
1041 |
+
"grid_column": null,
|
1042 |
+
"grid_gap": null,
|
1043 |
+
"grid_row": null,
|
1044 |
+
"grid_template_areas": null,
|
1045 |
+
"grid_template_columns": null,
|
1046 |
+
"grid_template_rows": null,
|
1047 |
+
"height": null,
|
1048 |
+
"justify_content": null,
|
1049 |
+
"justify_items": null,
|
1050 |
+
"left": null,
|
1051 |
+
"margin": null,
|
1052 |
+
"max_height": null,
|
1053 |
+
"max_width": null,
|
1054 |
+
"min_height": null,
|
1055 |
+
"min_width": null,
|
1056 |
+
"object_fit": null,
|
1057 |
+
"object_position": null,
|
1058 |
+
"order": null,
|
1059 |
+
"overflow": null,
|
1060 |
+
"overflow_x": null,
|
1061 |
+
"overflow_y": null,
|
1062 |
+
"padding": null,
|
1063 |
+
"right": null,
|
1064 |
+
"top": null,
|
1065 |
+
"visibility": null,
|
1066 |
+
"width": null
|
1067 |
+
}
|
1068 |
+
},
|
1069 |
+
"2c37aaee1f524837b477dc584209733a": {
|
1070 |
+
"model_module": "@jupyter-widgets/controls",
|
1071 |
+
"model_module_version": "1.5.0",
|
1072 |
+
"model_name": "DescriptionStyleModel",
|
1073 |
+
"state": {
|
1074 |
+
"_model_module": "@jupyter-widgets/controls",
|
1075 |
+
"_model_module_version": "1.5.0",
|
1076 |
+
"_model_name": "DescriptionStyleModel",
|
1077 |
+
"_view_count": null,
|
1078 |
+
"_view_module": "@jupyter-widgets/base",
|
1079 |
+
"_view_module_version": "1.2.0",
|
1080 |
+
"_view_name": "StyleView",
|
1081 |
+
"description_width": ""
|
1082 |
+
}
|
1083 |
+
},
|
1084 |
+
"31b2d7d8d9054c8fb47bf1b58043aee1": {
|
1085 |
+
"model_module": "@jupyter-widgets/controls",
|
1086 |
+
"model_module_version": "1.5.0",
|
1087 |
+
"model_name": "ProgressStyleModel",
|
1088 |
+
"state": {
|
1089 |
+
"_model_module": "@jupyter-widgets/controls",
|
1090 |
+
"_model_module_version": "1.5.0",
|
1091 |
+
"_model_name": "ProgressStyleModel",
|
1092 |
+
"_view_count": null,
|
1093 |
+
"_view_module": "@jupyter-widgets/base",
|
1094 |
+
"_view_module_version": "1.2.0",
|
1095 |
+
"_view_name": "StyleView",
|
1096 |
+
"bar_color": null,
|
1097 |
+
"description_width": ""
|
1098 |
+
}
|
1099 |
+
},
|
1100 |
+
"328cea1a2aac4fb58bceeaf126b99371": {
|
1101 |
+
"model_module": "@jupyter-widgets/controls",
|
1102 |
+
"model_module_version": "1.5.0",
|
1103 |
+
"model_name": "HTMLModel",
|
1104 |
+
"state": {
|
1105 |
+
"_dom_classes": [],
|
1106 |
+
"_model_module": "@jupyter-widgets/controls",
|
1107 |
+
"_model_module_version": "1.5.0",
|
1108 |
+
"_model_name": "HTMLModel",
|
1109 |
+
"_view_count": null,
|
1110 |
+
"_view_module": "@jupyter-widgets/controls",
|
1111 |
+
"_view_module_version": "1.5.0",
|
1112 |
+
"_view_name": "HTMLView",
|
1113 |
+
"description": "",
|
1114 |
+
"description_tooltip": null,
|
1115 |
+
"layout": "IPY_MODEL_c710ba94fd65486cbcbe1d402919e27f",
|
1116 |
+
"placeholder": "",
|
1117 |
+
"style": "IPY_MODEL_7f92331b29fd49a68815b6d7389c1005",
|
1118 |
+
"value": "100%"
|
1119 |
+
}
|
1120 |
+
},
|
1121 |
+
"34c5f87238cb4f13a03b207aa7dc1d18": {
|
1122 |
+
"model_module": "@jupyter-widgets/base",
|
1123 |
+
"model_module_version": "1.2.0",
|
1124 |
+
"model_name": "LayoutModel",
|
1125 |
+
"state": {
|
1126 |
+
"_model_module": "@jupyter-widgets/base",
|
1127 |
+
"_model_module_version": "1.2.0",
|
1128 |
+
"_model_name": "LayoutModel",
|
1129 |
+
"_view_count": null,
|
1130 |
+
"_view_module": "@jupyter-widgets/base",
|
1131 |
+
"_view_module_version": "1.2.0",
|
1132 |
+
"_view_name": "LayoutView",
|
1133 |
+
"align_content": null,
|
1134 |
+
"align_items": null,
|
1135 |
+
"align_self": null,
|
1136 |
+
"border": null,
|
1137 |
+
"bottom": null,
|
1138 |
+
"display": null,
|
1139 |
+
"flex": null,
|
1140 |
+
"flex_flow": null,
|
1141 |
+
"grid_area": null,
|
1142 |
+
"grid_auto_columns": null,
|
1143 |
+
"grid_auto_flow": null,
|
1144 |
+
"grid_auto_rows": null,
|
1145 |
+
"grid_column": null,
|
1146 |
+
"grid_gap": null,
|
1147 |
+
"grid_row": null,
|
1148 |
+
"grid_template_areas": null,
|
1149 |
+
"grid_template_columns": null,
|
1150 |
+
"grid_template_rows": null,
|
1151 |
+
"height": null,
|
1152 |
+
"justify_content": null,
|
1153 |
+
"justify_items": null,
|
1154 |
+
"left": null,
|
1155 |
+
"margin": null,
|
1156 |
+
"max_height": null,
|
1157 |
+
"max_width": null,
|
1158 |
+
"min_height": null,
|
1159 |
+
"min_width": null,
|
1160 |
+
"object_fit": null,
|
1161 |
+
"object_position": null,
|
1162 |
+
"order": null,
|
1163 |
+
"overflow": null,
|
1164 |
+
"overflow_x": null,
|
1165 |
+
"overflow_y": null,
|
1166 |
+
"padding": null,
|
1167 |
+
"right": null,
|
1168 |
+
"top": null,
|
1169 |
+
"visibility": null,
|
1170 |
+
"width": null
|
1171 |
+
}
|
1172 |
+
},
|
1173 |
+
"34d9460b112c419885bbff5211674cb3": {
|
1174 |
+
"model_module": "@jupyter-widgets/controls",
|
1175 |
+
"model_module_version": "1.5.0",
|
1176 |
+
"model_name": "DescriptionStyleModel",
|
1177 |
+
"state": {
|
1178 |
+
"_model_module": "@jupyter-widgets/controls",
|
1179 |
+
"_model_module_version": "1.5.0",
|
1180 |
+
"_model_name": "DescriptionStyleModel",
|
1181 |
+
"_view_count": null,
|
1182 |
+
"_view_module": "@jupyter-widgets/base",
|
1183 |
+
"_view_module_version": "1.2.0",
|
1184 |
+
"_view_name": "StyleView",
|
1185 |
+
"description_width": ""
|
1186 |
+
}
|
1187 |
+
},
|
1188 |
+
"4958b4c72d0c48af9a77974fc4ed449c": {
|
1189 |
+
"model_module": "@jupyter-widgets/base",
|
1190 |
+
"model_module_version": "1.2.0",
|
1191 |
+
"model_name": "LayoutModel",
|
1192 |
+
"state": {
|
1193 |
+
"_model_module": "@jupyter-widgets/base",
|
1194 |
+
"_model_module_version": "1.2.0",
|
1195 |
+
"_model_name": "LayoutModel",
|
1196 |
+
"_view_count": null,
|
1197 |
+
"_view_module": "@jupyter-widgets/base",
|
1198 |
+
"_view_module_version": "1.2.0",
|
1199 |
+
"_view_name": "LayoutView",
|
1200 |
+
"align_content": null,
|
1201 |
+
"align_items": null,
|
1202 |
+
"align_self": null,
|
1203 |
+
"border": null,
|
1204 |
+
"bottom": null,
|
1205 |
+
"display": null,
|
1206 |
+
"flex": null,
|
1207 |
+
"flex_flow": null,
|
1208 |
+
"grid_area": null,
|
1209 |
+
"grid_auto_columns": null,
|
1210 |
+
"grid_auto_flow": null,
|
1211 |
+
"grid_auto_rows": null,
|
1212 |
+
"grid_column": null,
|
1213 |
+
"grid_gap": null,
|
1214 |
+
"grid_row": null,
|
1215 |
+
"grid_template_areas": null,
|
1216 |
+
"grid_template_columns": null,
|
1217 |
+
"grid_template_rows": null,
|
1218 |
+
"height": null,
|
1219 |
+
"justify_content": null,
|
1220 |
+
"justify_items": null,
|
1221 |
+
"left": null,
|
1222 |
+
"margin": null,
|
1223 |
+
"max_height": null,
|
1224 |
+
"max_width": null,
|
1225 |
+
"min_height": null,
|
1226 |
+
"min_width": null,
|
1227 |
+
"object_fit": null,
|
1228 |
+
"object_position": null,
|
1229 |
+
"order": null,
|
1230 |
+
"overflow": null,
|
1231 |
+
"overflow_x": null,
|
1232 |
+
"overflow_y": null,
|
1233 |
+
"padding": null,
|
1234 |
+
"right": null,
|
1235 |
+
"top": null,
|
1236 |
+
"visibility": null,
|
1237 |
+
"width": null
|
1238 |
+
}
|
1239 |
+
},
|
1240 |
+
"52a852c0f98c49aa9e5edfdd4f91e4ca": {
|
1241 |
+
"model_module": "@jupyter-widgets/controls",
|
1242 |
+
"model_module_version": "1.5.0",
|
1243 |
+
"model_name": "FloatProgressModel",
|
1244 |
+
"state": {
|
1245 |
+
"_dom_classes": [],
|
1246 |
+
"_model_module": "@jupyter-widgets/controls",
|
1247 |
+
"_model_module_version": "1.5.0",
|
1248 |
+
"_model_name": "FloatProgressModel",
|
1249 |
+
"_view_count": null,
|
1250 |
+
"_view_module": "@jupyter-widgets/controls",
|
1251 |
+
"_view_module_version": "1.5.0",
|
1252 |
+
"_view_name": "ProgressView",
|
1253 |
+
"bar_style": "success",
|
1254 |
+
"description": "",
|
1255 |
+
"description_tooltip": null,
|
1256 |
+
"layout": "IPY_MODEL_23c9da8dd7bf4be9a23357806ebfc036",
|
1257 |
+
"max": 158752204,
|
1258 |
+
"min": 0,
|
1259 |
+
"orientation": "horizontal",
|
1260 |
+
"style": "IPY_MODEL_31b2d7d8d9054c8fb47bf1b58043aee1",
|
1261 |
+
"value": 158752204
|
1262 |
+
}
|
1263 |
+
},
|
1264 |
+
"5925567ffea2436691c4ed3b7b147c17": {
|
1265 |
+
"model_module": "@jupyter-widgets/base",
|
1266 |
+
"model_module_version": "1.2.0",
|
1267 |
+
"model_name": "LayoutModel",
|
1268 |
+
"state": {
|
1269 |
+
"_model_module": "@jupyter-widgets/base",
|
1270 |
+
"_model_module_version": "1.2.0",
|
1271 |
+
"_model_name": "LayoutModel",
|
1272 |
+
"_view_count": null,
|
1273 |
+
"_view_module": "@jupyter-widgets/base",
|
1274 |
+
"_view_module_version": "1.2.0",
|
1275 |
+
"_view_name": "LayoutView",
|
1276 |
+
"align_content": null,
|
1277 |
+
"align_items": null,
|
1278 |
+
"align_self": null,
|
1279 |
+
"border": null,
|
1280 |
+
"bottom": null,
|
1281 |
+
"display": null,
|
1282 |
+
"flex": null,
|
1283 |
+
"flex_flow": null,
|
1284 |
+
"grid_area": null,
|
1285 |
+
"grid_auto_columns": null,
|
1286 |
+
"grid_auto_flow": null,
|
1287 |
+
"grid_auto_rows": null,
|
1288 |
+
"grid_column": null,
|
1289 |
+
"grid_gap": null,
|
1290 |
+
"grid_row": null,
|
1291 |
+
"grid_template_areas": null,
|
1292 |
+
"grid_template_columns": null,
|
1293 |
+
"grid_template_rows": null,
|
1294 |
+
"height": null,
|
1295 |
+
"justify_content": null,
|
1296 |
+
"justify_items": null,
|
1297 |
+
"left": null,
|
1298 |
+
"margin": null,
|
1299 |
+
"max_height": null,
|
1300 |
+
"max_width": null,
|
1301 |
+
"min_height": null,
|
1302 |
+
"min_width": null,
|
1303 |
+
"object_fit": null,
|
1304 |
+
"object_position": null,
|
1305 |
+
"order": null,
|
1306 |
+
"overflow": null,
|
1307 |
+
"overflow_x": null,
|
1308 |
+
"overflow_y": null,
|
1309 |
+
"padding": null,
|
1310 |
+
"right": null,
|
1311 |
+
"top": null,
|
1312 |
+
"visibility": null,
|
1313 |
+
"width": null
|
1314 |
+
}
|
1315 |
+
},
|
1316 |
+
"5951d1bafdd548b6b835b28cf9960533": {
|
1317 |
+
"model_module": "@jupyter-widgets/controls",
|
1318 |
+
"model_module_version": "1.5.0",
|
1319 |
+
"model_name": "ProgressStyleModel",
|
1320 |
+
"state": {
|
1321 |
+
"_model_module": "@jupyter-widgets/controls",
|
1322 |
+
"_model_module_version": "1.5.0",
|
1323 |
+
"_model_name": "ProgressStyleModel",
|
1324 |
+
"_view_count": null,
|
1325 |
+
"_view_module": "@jupyter-widgets/base",
|
1326 |
+
"_view_module_version": "1.2.0",
|
1327 |
+
"_view_name": "StyleView",
|
1328 |
+
"bar_color": null,
|
1329 |
+
"description_width": ""
|
1330 |
+
}
|
1331 |
+
},
|
1332 |
+
"5a9c9d4b60e54a3bb64c576707bd9736": {
|
1333 |
+
"model_module": "@jupyter-widgets/controls",
|
1334 |
+
"model_module_version": "1.5.0",
|
1335 |
+
"model_name": "DescriptionStyleModel",
|
1336 |
+
"state": {
|
1337 |
+
"_model_module": "@jupyter-widgets/controls",
|
1338 |
+
"_model_module_version": "1.5.0",
|
1339 |
+
"_model_name": "DescriptionStyleModel",
|
1340 |
+
"_view_count": null,
|
1341 |
+
"_view_module": "@jupyter-widgets/base",
|
1342 |
+
"_view_module_version": "1.2.0",
|
1343 |
+
"_view_name": "StyleView",
|
1344 |
+
"description_width": ""
|
1345 |
+
}
|
1346 |
+
},
|
1347 |
+
"5e469744bf6a4813983ae8ee727c1c5e": {
|
1348 |
+
"model_module": "@jupyter-widgets/controls",
|
1349 |
+
"model_module_version": "1.5.0",
|
1350 |
+
"model_name": "DescriptionStyleModel",
|
1351 |
+
"state": {
|
1352 |
+
"_model_module": "@jupyter-widgets/controls",
|
1353 |
+
"_model_module_version": "1.5.0",
|
1354 |
+
"_model_name": "DescriptionStyleModel",
|
1355 |
+
"_view_count": null,
|
1356 |
+
"_view_module": "@jupyter-widgets/base",
|
1357 |
+
"_view_module_version": "1.2.0",
|
1358 |
+
"_view_name": "StyleView",
|
1359 |
+
"description_width": ""
|
1360 |
+
}
|
1361 |
+
},
|
1362 |
+
"662d61fdd89d434785e74a7038427fbc": {
|
1363 |
+
"model_module": "@jupyter-widgets/controls",
|
1364 |
+
"model_module_version": "1.5.0",
|
1365 |
+
"model_name": "FloatProgressModel",
|
1366 |
+
"state": {
|
1367 |
+
"_dom_classes": [],
|
1368 |
+
"_model_module": "@jupyter-widgets/controls",
|
1369 |
+
"_model_module_version": "1.5.0",
|
1370 |
+
"_model_name": "FloatProgressModel",
|
1371 |
+
"_view_count": null,
|
1372 |
+
"_view_module": "@jupyter-widgets/controls",
|
1373 |
+
"_view_module_version": "1.5.0",
|
1374 |
+
"_view_name": "ProgressView",
|
1375 |
+
"bar_style": "success",
|
1376 |
+
"description": "",
|
1377 |
+
"description_tooltip": null,
|
1378 |
+
"layout": "IPY_MODEL_adcffda7f78c4a1c8bdc6010c8704292",
|
1379 |
+
"max": 1,
|
1380 |
+
"min": 0,
|
1381 |
+
"orientation": "horizontal",
|
1382 |
+
"style": "IPY_MODEL_5951d1bafdd548b6b835b28cf9960533",
|
1383 |
+
"value": 1
|
1384 |
+
}
|
1385 |
+
},
|
1386 |
+
"670d4f16a7e44144afc0ac70eea59325": {
|
1387 |
+
"model_module": "@jupyter-widgets/controls",
|
1388 |
+
"model_module_version": "1.5.0",
|
1389 |
+
"model_name": "HTMLModel",
|
1390 |
+
"state": {
|
1391 |
+
"_dom_classes": [],
|
1392 |
+
"_model_module": "@jupyter-widgets/controls",
|
1393 |
+
"_model_module_version": "1.5.0",
|
1394 |
+
"_model_name": "HTMLModel",
|
1395 |
+
"_view_count": null,
|
1396 |
+
"_view_module": "@jupyter-widgets/controls",
|
1397 |
+
"_view_module_version": "1.5.0",
|
1398 |
+
"_view_name": "HTMLView",
|
1399 |
+
"description": "",
|
1400 |
+
"description_tooltip": null,
|
1401 |
+
"layout": "IPY_MODEL_0bee4735e017471fa8679ad984b88633",
|
1402 |
+
"placeholder": "",
|
1403 |
+
"style": "IPY_MODEL_2c37aaee1f524837b477dc584209733a",
|
1404 |
+
"value": " 1/1 [00:00<00:00, 21.15it/s]"
|
1405 |
+
}
|
1406 |
+
},
|
1407 |
+
"6a7e3547dc4141e7b5937f2baff58cbf": {
|
1408 |
+
"model_module": "@jupyter-widgets/controls",
|
1409 |
+
"model_module_version": "1.5.0",
|
1410 |
+
"model_name": "HBoxModel",
|
1411 |
+
"state": {
|
1412 |
+
"_dom_classes": [],
|
1413 |
+
"_model_module": "@jupyter-widgets/controls",
|
1414 |
+
"_model_module_version": "1.5.0",
|
1415 |
+
"_model_name": "HBoxModel",
|
1416 |
+
"_view_count": null,
|
1417 |
+
"_view_module": "@jupyter-widgets/controls",
|
1418 |
+
"_view_module_version": "1.5.0",
|
1419 |
+
"_view_name": "HBoxView",
|
1420 |
+
"box_style": "",
|
1421 |
+
"children": [
|
1422 |
+
"IPY_MODEL_e33033ecda374ed4966ae5fccf6efe37",
|
1423 |
+
"IPY_MODEL_52a852c0f98c49aa9e5edfdd4f91e4ca",
|
1424 |
+
"IPY_MODEL_d1ff84cb5591449abcc7dd3e37f9a2df"
|
1425 |
+
],
|
1426 |
+
"layout": "IPY_MODEL_921a3c1f50a24979838fd560c2cea9e0"
|
1427 |
+
}
|
1428 |
+
},
|
1429 |
+
"6b43ea2d93c04965a4539b3ef839893b": {
|
1430 |
+
"model_module": "@jupyter-widgets/controls",
|
1431 |
+
"model_module_version": "1.5.0",
|
1432 |
+
"model_name": "DescriptionStyleModel",
|
1433 |
+
"state": {
|
1434 |
+
"_model_module": "@jupyter-widgets/controls",
|
1435 |
+
"_model_module_version": "1.5.0",
|
1436 |
+
"_model_name": "DescriptionStyleModel",
|
1437 |
+
"_view_count": null,
|
1438 |
+
"_view_module": "@jupyter-widgets/base",
|
1439 |
+
"_view_module_version": "1.2.0",
|
1440 |
+
"_view_name": "StyleView",
|
1441 |
+
"description_width": ""
|
1442 |
+
}
|
1443 |
+
},
|
1444 |
+
"75130a60f93b49c8bee0986665121d02": {
|
1445 |
+
"model_module": "@jupyter-widgets/base",
|
1446 |
+
"model_module_version": "1.2.0",
|
1447 |
+
"model_name": "LayoutModel",
|
1448 |
+
"state": {
|
1449 |
+
"_model_module": "@jupyter-widgets/base",
|
1450 |
+
"_model_module_version": "1.2.0",
|
1451 |
+
"_model_name": "LayoutModel",
|
1452 |
+
"_view_count": null,
|
1453 |
+
"_view_module": "@jupyter-widgets/base",
|
1454 |
+
"_view_module_version": "1.2.0",
|
1455 |
+
"_view_name": "LayoutView",
|
1456 |
+
"align_content": null,
|
1457 |
+
"align_items": null,
|
1458 |
+
"align_self": null,
|
1459 |
+
"border": null,
|
1460 |
+
"bottom": null,
|
1461 |
+
"display": null,
|
1462 |
+
"flex": null,
|
1463 |
+
"flex_flow": null,
|
1464 |
+
"grid_area": null,
|
1465 |
+
"grid_auto_columns": null,
|
1466 |
+
"grid_auto_flow": null,
|
1467 |
+
"grid_auto_rows": null,
|
1468 |
+
"grid_column": null,
|
1469 |
+
"grid_gap": null,
|
1470 |
+
"grid_row": null,
|
1471 |
+
"grid_template_areas": null,
|
1472 |
+
"grid_template_columns": null,
|
1473 |
+
"grid_template_rows": null,
|
1474 |
+
"height": null,
|
1475 |
+
"justify_content": null,
|
1476 |
+
"justify_items": null,
|
1477 |
+
"left": null,
|
1478 |
+
"margin": null,
|
1479 |
+
"max_height": null,
|
1480 |
+
"max_width": null,
|
1481 |
+
"min_height": null,
|
1482 |
+
"min_width": null,
|
1483 |
+
"object_fit": null,
|
1484 |
+
"object_position": null,
|
1485 |
+
"order": null,
|
1486 |
+
"overflow": null,
|
1487 |
+
"overflow_x": null,
|
1488 |
+
"overflow_y": null,
|
1489 |
+
"padding": null,
|
1490 |
+
"right": null,
|
1491 |
+
"top": null,
|
1492 |
+
"visibility": null,
|
1493 |
+
"width": null
|
1494 |
+
}
|
1495 |
+
},
|
1496 |
+
"789d5845a82e48fe9c629af743b5b1f0": {
|
1497 |
+
"model_module": "@jupyter-widgets/base",
|
1498 |
+
"model_module_version": "1.2.0",
|
1499 |
+
"model_name": "LayoutModel",
|
1500 |
+
"state": {
|
1501 |
+
"_model_module": "@jupyter-widgets/base",
|
1502 |
+
"_model_module_version": "1.2.0",
|
1503 |
+
"_model_name": "LayoutModel",
|
1504 |
+
"_view_count": null,
|
1505 |
+
"_view_module": "@jupyter-widgets/base",
|
1506 |
+
"_view_module_version": "1.2.0",
|
1507 |
+
"_view_name": "LayoutView",
|
1508 |
+
"align_content": null,
|
1509 |
+
"align_items": null,
|
1510 |
+
"align_self": null,
|
1511 |
+
"border": null,
|
1512 |
+
"bottom": null,
|
1513 |
+
"display": null,
|
1514 |
+
"flex": null,
|
1515 |
+
"flex_flow": null,
|
1516 |
+
"grid_area": null,
|
1517 |
+
"grid_auto_columns": null,
|
1518 |
+
"grid_auto_flow": null,
|
1519 |
+
"grid_auto_rows": null,
|
1520 |
+
"grid_column": null,
|
1521 |
+
"grid_gap": null,
|
1522 |
+
"grid_row": null,
|
1523 |
+
"grid_template_areas": null,
|
1524 |
+
"grid_template_columns": null,
|
1525 |
+
"grid_template_rows": null,
|
1526 |
+
"height": null,
|
1527 |
+
"justify_content": null,
|
1528 |
+
"justify_items": null,
|
1529 |
+
"left": null,
|
1530 |
+
"margin": null,
|
1531 |
+
"max_height": null,
|
1532 |
+
"max_width": null,
|
1533 |
+
"min_height": null,
|
1534 |
+
"min_width": null,
|
1535 |
+
"object_fit": null,
|
1536 |
+
"object_position": null,
|
1537 |
+
"order": null,
|
1538 |
+
"overflow": null,
|
1539 |
+
"overflow_x": null,
|
1540 |
+
"overflow_y": null,
|
1541 |
+
"padding": null,
|
1542 |
+
"right": null,
|
1543 |
+
"top": null,
|
1544 |
+
"visibility": null,
|
1545 |
+
"width": null
|
1546 |
+
}
|
1547 |
+
},
|
1548 |
+
"799acae3451445f0a3616b8932f2e3f3": {
|
1549 |
+
"model_module": "@jupyter-widgets/controls",
|
1550 |
+
"model_module_version": "1.5.0",
|
1551 |
+
"model_name": "HTMLModel",
|
1552 |
+
"state": {
|
1553 |
+
"_dom_classes": [],
|
1554 |
+
"_model_module": "@jupyter-widgets/controls",
|
1555 |
+
"_model_module_version": "1.5.0",
|
1556 |
+
"_model_name": "HTMLModel",
|
1557 |
+
"_view_count": null,
|
1558 |
+
"_view_module": "@jupyter-widgets/controls",
|
1559 |
+
"_view_module_version": "1.5.0",
|
1560 |
+
"_view_name": "HTMLView",
|
1561 |
+
"description": "",
|
1562 |
+
"description_tooltip": null,
|
1563 |
+
"layout": "IPY_MODEL_789d5845a82e48fe9c629af743b5b1f0",
|
1564 |
+
"placeholder": "",
|
1565 |
+
"style": "IPY_MODEL_5a9c9d4b60e54a3bb64c576707bd9736",
|
1566 |
+
"value": "Downloading: 100%"
|
1567 |
+
}
|
1568 |
+
},
|
1569 |
+
"7f92331b29fd49a68815b6d7389c1005": {
|
1570 |
+
"model_module": "@jupyter-widgets/controls",
|
1571 |
+
"model_module_version": "1.5.0",
|
1572 |
+
"model_name": "DescriptionStyleModel",
|
1573 |
+
"state": {
|
1574 |
+
"_model_module": "@jupyter-widgets/controls",
|
1575 |
+
"_model_module_version": "1.5.0",
|
1576 |
+
"_model_name": "DescriptionStyleModel",
|
1577 |
+
"_view_count": null,
|
1578 |
+
"_view_module": "@jupyter-widgets/base",
|
1579 |
+
"_view_module_version": "1.2.0",
|
1580 |
+
"_view_name": "StyleView",
|
1581 |
+
"description_width": ""
|
1582 |
+
}
|
1583 |
+
},
|
1584 |
+
"82692c41501c487fad27c6b19836f46f": {
|
1585 |
+
"model_module": "@jupyter-widgets/controls",
|
1586 |
+
"model_module_version": "1.5.0",
|
1587 |
+
"model_name": "FloatProgressModel",
|
1588 |
+
"state": {
|
1589 |
+
"_dom_classes": [],
|
1590 |
+
"_model_module": "@jupyter-widgets/controls",
|
1591 |
+
"_model_module_version": "1.5.0",
|
1592 |
+
"_model_name": "FloatProgressModel",
|
1593 |
+
"_view_count": null,
|
1594 |
+
"_view_module": "@jupyter-widgets/controls",
|
1595 |
+
"_view_module_version": "1.5.0",
|
1596 |
+
"_view_name": "ProgressView",
|
1597 |
+
"bar_style": "success",
|
1598 |
+
"description": "",
|
1599 |
+
"description_tooltip": null,
|
1600 |
+
"layout": "IPY_MODEL_db7ee45589e04749b80376e25ee377bb",
|
1601 |
+
"max": 1,
|
1602 |
+
"min": 0,
|
1603 |
+
"orientation": "horizontal",
|
1604 |
+
"style": "IPY_MODEL_c7955974289a4f448b422d7e4640131a",
|
1605 |
+
"value": 1
|
1606 |
+
}
|
1607 |
+
},
|
1608 |
+
"921a3c1f50a24979838fd560c2cea9e0": {
|
1609 |
+
"model_module": "@jupyter-widgets/base",
|
1610 |
+
"model_module_version": "1.2.0",
|
1611 |
+
"model_name": "LayoutModel",
|
1612 |
+
"state": {
|
1613 |
+
"_model_module": "@jupyter-widgets/base",
|
1614 |
+
"_model_module_version": "1.2.0",
|
1615 |
+
"_model_name": "LayoutModel",
|
1616 |
+
"_view_count": null,
|
1617 |
+
"_view_module": "@jupyter-widgets/base",
|
1618 |
+
"_view_module_version": "1.2.0",
|
1619 |
+
"_view_name": "LayoutView",
|
1620 |
+
"align_content": null,
|
1621 |
+
"align_items": null,
|
1622 |
+
"align_self": null,
|
1623 |
+
"border": null,
|
1624 |
+
"bottom": null,
|
1625 |
+
"display": null,
|
1626 |
+
"flex": null,
|
1627 |
+
"flex_flow": null,
|
1628 |
+
"grid_area": null,
|
1629 |
+
"grid_auto_columns": null,
|
1630 |
+
"grid_auto_flow": null,
|
1631 |
+
"grid_auto_rows": null,
|
1632 |
+
"grid_column": null,
|
1633 |
+
"grid_gap": null,
|
1634 |
+
"grid_row": null,
|
1635 |
+
"grid_template_areas": null,
|
1636 |
+
"grid_template_columns": null,
|
1637 |
+
"grid_template_rows": null,
|
1638 |
+
"height": null,
|
1639 |
+
"justify_content": null,
|
1640 |
+
"justify_items": null,
|
1641 |
+
"left": null,
|
1642 |
+
"margin": null,
|
1643 |
+
"max_height": null,
|
1644 |
+
"max_width": null,
|
1645 |
+
"min_height": null,
|
1646 |
+
"min_width": null,
|
1647 |
+
"object_fit": null,
|
1648 |
+
"object_position": null,
|
1649 |
+
"order": null,
|
1650 |
+
"overflow": null,
|
1651 |
+
"overflow_x": null,
|
1652 |
+
"overflow_y": null,
|
1653 |
+
"padding": null,
|
1654 |
+
"right": null,
|
1655 |
+
"top": null,
|
1656 |
+
"visibility": null,
|
1657 |
+
"width": null
|
1658 |
+
}
|
1659 |
+
},
|
1660 |
+
"a1eca879a11f414f8173b0c2c260f4c3": {
|
1661 |
+
"model_module": "@jupyter-widgets/controls",
|
1662 |
+
"model_module_version": "1.5.0",
|
1663 |
+
"model_name": "HBoxModel",
|
1664 |
+
"state": {
|
1665 |
+
"_dom_classes": [],
|
1666 |
+
"_model_module": "@jupyter-widgets/controls",
|
1667 |
+
"_model_module_version": "1.5.0",
|
1668 |
+
"_model_name": "HBoxModel",
|
1669 |
+
"_view_count": null,
|
1670 |
+
"_view_module": "@jupyter-widgets/controls",
|
1671 |
+
"_view_module_version": "1.5.0",
|
1672 |
+
"_view_name": "HBoxView",
|
1673 |
+
"box_style": "",
|
1674 |
+
"children": [
|
1675 |
+
"IPY_MODEL_328cea1a2aac4fb58bceeaf126b99371",
|
1676 |
+
"IPY_MODEL_662d61fdd89d434785e74a7038427fbc",
|
1677 |
+
"IPY_MODEL_670d4f16a7e44144afc0ac70eea59325"
|
1678 |
+
],
|
1679 |
+
"layout": "IPY_MODEL_75130a60f93b49c8bee0986665121d02"
|
1680 |
+
}
|
1681 |
+
},
|
1682 |
+
"a41cf7f5121a4068842bb5c7d2bc4d62": {
|
1683 |
+
"model_module": "@jupyter-widgets/base",
|
1684 |
+
"model_module_version": "1.2.0",
|
1685 |
+
"model_name": "LayoutModel",
|
1686 |
+
"state": {
|
1687 |
+
"_model_module": "@jupyter-widgets/base",
|
1688 |
+
"_model_module_version": "1.2.0",
|
1689 |
+
"_model_name": "LayoutModel",
|
1690 |
+
"_view_count": null,
|
1691 |
+
"_view_module": "@jupyter-widgets/base",
|
1692 |
+
"_view_module_version": "1.2.0",
|
1693 |
+
"_view_name": "LayoutView",
|
1694 |
+
"align_content": null,
|
1695 |
+
"align_items": null,
|
1696 |
+
"align_self": null,
|
1697 |
+
"border": null,
|
1698 |
+
"bottom": null,
|
1699 |
+
"display": null,
|
1700 |
+
"flex": null,
|
1701 |
+
"flex_flow": null,
|
1702 |
+
"grid_area": null,
|
1703 |
+
"grid_auto_columns": null,
|
1704 |
+
"grid_auto_flow": null,
|
1705 |
+
"grid_auto_rows": null,
|
1706 |
+
"grid_column": null,
|
1707 |
+
"grid_gap": null,
|
1708 |
+
"grid_row": null,
|
1709 |
+
"grid_template_areas": null,
|
1710 |
+
"grid_template_columns": null,
|
1711 |
+
"grid_template_rows": null,
|
1712 |
+
"height": null,
|
1713 |
+
"justify_content": null,
|
1714 |
+
"justify_items": null,
|
1715 |
+
"left": null,
|
1716 |
+
"margin": null,
|
1717 |
+
"max_height": null,
|
1718 |
+
"max_width": null,
|
1719 |
+
"min_height": null,
|
1720 |
+
"min_width": null,
|
1721 |
+
"object_fit": null,
|
1722 |
+
"object_position": null,
|
1723 |
+
"order": null,
|
1724 |
+
"overflow": null,
|
1725 |
+
"overflow_x": null,
|
1726 |
+
"overflow_y": null,
|
1727 |
+
"padding": null,
|
1728 |
+
"right": null,
|
1729 |
+
"top": null,
|
1730 |
+
"visibility": null,
|
1731 |
+
"width": null
|
1732 |
+
}
|
1733 |
+
},
|
1734 |
+
"a4b5b93b88f549e8a4f37f3d48834ca9": {
|
1735 |
+
"model_module": "@jupyter-widgets/controls",
|
1736 |
+
"model_module_version": "1.5.0",
|
1737 |
+
"model_name": "HTMLModel",
|
1738 |
+
"state": {
|
1739 |
+
"_dom_classes": [],
|
1740 |
+
"_model_module": "@jupyter-widgets/controls",
|
1741 |
+
"_model_module_version": "1.5.0",
|
1742 |
+
"_model_name": "HTMLModel",
|
1743 |
+
"_view_count": null,
|
1744 |
+
"_view_module": "@jupyter-widgets/controls",
|
1745 |
+
"_view_module_version": "1.5.0",
|
1746 |
+
"_view_name": "HTMLView",
|
1747 |
+
"description": "",
|
1748 |
+
"description_tooltip": null,
|
1749 |
+
"layout": "IPY_MODEL_34c5f87238cb4f13a03b207aa7dc1d18",
|
1750 |
+
"placeholder": "",
|
1751 |
+
"style": "IPY_MODEL_5e469744bf6a4813983ae8ee727c1c5e",
|
1752 |
+
"value": "100%"
|
1753 |
+
}
|
1754 |
+
},
|
1755 |
+
"a6e3c5ce0a3c49ffb3d7cbf92568fe47": {
|
1756 |
+
"model_module": "@jupyter-widgets/base",
|
1757 |
+
"model_module_version": "1.2.0",
|
1758 |
+
"model_name": "LayoutModel",
|
1759 |
+
"state": {
|
1760 |
+
"_model_module": "@jupyter-widgets/base",
|
1761 |
+
"_model_module_version": "1.2.0",
|
1762 |
+
"_model_name": "LayoutModel",
|
1763 |
+
"_view_count": null,
|
1764 |
+
"_view_module": "@jupyter-widgets/base",
|
1765 |
+
"_view_module_version": "1.2.0",
|
1766 |
+
"_view_name": "LayoutView",
|
1767 |
+
"align_content": null,
|
1768 |
+
"align_items": null,
|
1769 |
+
"align_self": null,
|
1770 |
+
"border": null,
|
1771 |
+
"bottom": null,
|
1772 |
+
"display": null,
|
1773 |
+
"flex": null,
|
1774 |
+
"flex_flow": null,
|
1775 |
+
"grid_area": null,
|
1776 |
+
"grid_auto_columns": null,
|
1777 |
+
"grid_auto_flow": null,
|
1778 |
+
"grid_auto_rows": null,
|
1779 |
+
"grid_column": null,
|
1780 |
+
"grid_gap": null,
|
1781 |
+
"grid_row": null,
|
1782 |
+
"grid_template_areas": null,
|
1783 |
+
"grid_template_columns": null,
|
1784 |
+
"grid_template_rows": null,
|
1785 |
+
"height": null,
|
1786 |
+
"justify_content": null,
|
1787 |
+
"justify_items": null,
|
1788 |
+
"left": null,
|
1789 |
+
"margin": null,
|
1790 |
+
"max_height": null,
|
1791 |
+
"max_width": null,
|
1792 |
+
"min_height": null,
|
1793 |
+
"min_width": null,
|
1794 |
+
"object_fit": null,
|
1795 |
+
"object_position": null,
|
1796 |
+
"order": null,
|
1797 |
+
"overflow": null,
|
1798 |
+
"overflow_x": null,
|
1799 |
+
"overflow_y": null,
|
1800 |
+
"padding": null,
|
1801 |
+
"right": null,
|
1802 |
+
"top": null,
|
1803 |
+
"visibility": null,
|
1804 |
+
"width": null
|
1805 |
+
}
|
1806 |
+
},
|
1807 |
+
"ad5d7b0bc9ad4e228b3bc76bc975cc47": {
|
1808 |
+
"model_module": "@jupyter-widgets/controls",
|
1809 |
+
"model_module_version": "1.5.0",
|
1810 |
+
"model_name": "HBoxModel",
|
1811 |
+
"state": {
|
1812 |
+
"_dom_classes": [],
|
1813 |
+
"_model_module": "@jupyter-widgets/controls",
|
1814 |
+
"_model_module_version": "1.5.0",
|
1815 |
+
"_model_name": "HBoxModel",
|
1816 |
+
"_view_count": null,
|
1817 |
+
"_view_module": "@jupyter-widgets/controls",
|
1818 |
+
"_view_module_version": "1.5.0",
|
1819 |
+
"_view_name": "HBoxView",
|
1820 |
+
"box_style": "",
|
1821 |
+
"children": [
|
1822 |
+
"IPY_MODEL_799acae3451445f0a3616b8932f2e3f3",
|
1823 |
+
"IPY_MODEL_1714ea91694842339756f26b2fa9c725",
|
1824 |
+
"IPY_MODEL_b5d6b069468246abbb3207f3df6f9dde"
|
1825 |
+
],
|
1826 |
+
"layout": "IPY_MODEL_5925567ffea2436691c4ed3b7b147c17"
|
1827 |
+
}
|
1828 |
+
},
|
1829 |
+
"adcffda7f78c4a1c8bdc6010c8704292": {
|
1830 |
+
"model_module": "@jupyter-widgets/base",
|
1831 |
+
"model_module_version": "1.2.0",
|
1832 |
+
"model_name": "LayoutModel",
|
1833 |
+
"state": {
|
1834 |
+
"_model_module": "@jupyter-widgets/base",
|
1835 |
+
"_model_module_version": "1.2.0",
|
1836 |
+
"_model_name": "LayoutModel",
|
1837 |
+
"_view_count": null,
|
1838 |
+
"_view_module": "@jupyter-widgets/base",
|
1839 |
+
"_view_module_version": "1.2.0",
|
1840 |
+
"_view_name": "LayoutView",
|
1841 |
+
"align_content": null,
|
1842 |
+
"align_items": null,
|
1843 |
+
"align_self": null,
|
1844 |
+
"border": null,
|
1845 |
+
"bottom": null,
|
1846 |
+
"display": null,
|
1847 |
+
"flex": null,
|
1848 |
+
"flex_flow": null,
|
1849 |
+
"grid_area": null,
|
1850 |
+
"grid_auto_columns": null,
|
1851 |
+
"grid_auto_flow": null,
|
1852 |
+
"grid_auto_rows": null,
|
1853 |
+
"grid_column": null,
|
1854 |
+
"grid_gap": null,
|
1855 |
+
"grid_row": null,
|
1856 |
+
"grid_template_areas": null,
|
1857 |
+
"grid_template_columns": null,
|
1858 |
+
"grid_template_rows": null,
|
1859 |
+
"height": null,
|
1860 |
+
"justify_content": null,
|
1861 |
+
"justify_items": null,
|
1862 |
+
"left": null,
|
1863 |
+
"margin": null,
|
1864 |
+
"max_height": null,
|
1865 |
+
"max_width": null,
|
1866 |
+
"min_height": null,
|
1867 |
+
"min_width": null,
|
1868 |
+
"object_fit": null,
|
1869 |
+
"object_position": null,
|
1870 |
+
"order": null,
|
1871 |
+
"overflow": null,
|
1872 |
+
"overflow_x": null,
|
1873 |
+
"overflow_y": null,
|
1874 |
+
"padding": null,
|
1875 |
+
"right": null,
|
1876 |
+
"top": null,
|
1877 |
+
"visibility": null,
|
1878 |
+
"width": null
|
1879 |
+
}
|
1880 |
+
},
|
1881 |
+
"af8f433ef2f540c9bd70d14421904d83": {
|
1882 |
+
"model_module": "@jupyter-widgets/controls",
|
1883 |
+
"model_module_version": "1.5.0",
|
1884 |
+
"model_name": "HTMLModel",
|
1885 |
+
"state": {
|
1886 |
+
"_dom_classes": [],
|
1887 |
+
"_model_module": "@jupyter-widgets/controls",
|
1888 |
+
"_model_module_version": "1.5.0",
|
1889 |
+
"_model_name": "HTMLModel",
|
1890 |
+
"_view_count": null,
|
1891 |
+
"_view_module": "@jupyter-widgets/controls",
|
1892 |
+
"_view_module_version": "1.5.0",
|
1893 |
+
"_view_name": "HTMLView",
|
1894 |
+
"description": "",
|
1895 |
+
"description_tooltip": null,
|
1896 |
+
"layout": "IPY_MODEL_033cb43d32314d279a7b9e1e86bbccdc",
|
1897 |
+
"placeholder": "",
|
1898 |
+
"style": "IPY_MODEL_34d9460b112c419885bbff5211674cb3",
|
1899 |
+
"value": " 1/1 [00:05<00:00, 5.67s/it]"
|
1900 |
+
}
|
1901 |
+
},
|
1902 |
+
"b5d6b069468246abbb3207f3df6f9dde": {
|
1903 |
+
"model_module": "@jupyter-widgets/controls",
|
1904 |
+
"model_module_version": "1.5.0",
|
1905 |
+
"model_name": "HTMLModel",
|
1906 |
+
"state": {
|
1907 |
+
"_dom_classes": [],
|
1908 |
+
"_model_module": "@jupyter-widgets/controls",
|
1909 |
+
"_model_module_version": "1.5.0",
|
1910 |
+
"_model_name": "HTMLModel",
|
1911 |
+
"_view_count": null,
|
1912 |
+
"_view_module": "@jupyter-widgets/controls",
|
1913 |
+
"_view_module_version": "1.5.0",
|
1914 |
+
"_view_name": "HTMLView",
|
1915 |
+
"description": "",
|
1916 |
+
"description_tooltip": null,
|
1917 |
+
"layout": "IPY_MODEL_4958b4c72d0c48af9a77974fc4ed449c",
|
1918 |
+
"placeholder": "",
|
1919 |
+
"style": "IPY_MODEL_6b43ea2d93c04965a4539b3ef839893b",
|
1920 |
+
"value": " 1.16k/1.16k [00:00<00:00, 24.4kB/s]"
|
1921 |
+
}
|
1922 |
+
},
|
1923 |
+
"c710ba94fd65486cbcbe1d402919e27f": {
|
1924 |
+
"model_module": "@jupyter-widgets/base",
|
1925 |
+
"model_module_version": "1.2.0",
|
1926 |
+
"model_name": "LayoutModel",
|
1927 |
+
"state": {
|
1928 |
+
"_model_module": "@jupyter-widgets/base",
|
1929 |
+
"_model_module_version": "1.2.0",
|
1930 |
+
"_model_name": "LayoutModel",
|
1931 |
+
"_view_count": null,
|
1932 |
+
"_view_module": "@jupyter-widgets/base",
|
1933 |
+
"_view_module_version": "1.2.0",
|
1934 |
+
"_view_name": "LayoutView",
|
1935 |
+
"align_content": null,
|
1936 |
+
"align_items": null,
|
1937 |
+
"align_self": null,
|
1938 |
+
"border": null,
|
1939 |
+
"bottom": null,
|
1940 |
+
"display": null,
|
1941 |
+
"flex": null,
|
1942 |
+
"flex_flow": null,
|
1943 |
+
"grid_area": null,
|
1944 |
+
"grid_auto_columns": null,
|
1945 |
+
"grid_auto_flow": null,
|
1946 |
+
"grid_auto_rows": null,
|
1947 |
+
"grid_column": null,
|
1948 |
+
"grid_gap": null,
|
1949 |
+
"grid_row": null,
|
1950 |
+
"grid_template_areas": null,
|
1951 |
+
"grid_template_columns": null,
|
1952 |
+
"grid_template_rows": null,
|
1953 |
+
"height": null,
|
1954 |
+
"justify_content": null,
|
1955 |
+
"justify_items": null,
|
1956 |
+
"left": null,
|
1957 |
+
"margin": null,
|
1958 |
+
"max_height": null,
|
1959 |
+
"max_width": null,
|
1960 |
+
"min_height": null,
|
1961 |
+
"min_width": null,
|
1962 |
+
"object_fit": null,
|
1963 |
+
"object_position": null,
|
1964 |
+
"order": null,
|
1965 |
+
"overflow": null,
|
1966 |
+
"overflow_x": null,
|
1967 |
+
"overflow_y": null,
|
1968 |
+
"padding": null,
|
1969 |
+
"right": null,
|
1970 |
+
"top": null,
|
1971 |
+
"visibility": null,
|
1972 |
+
"width": null
|
1973 |
+
}
|
1974 |
+
},
|
1975 |
+
"c7955974289a4f448b422d7e4640131a": {
|
1976 |
+
"model_module": "@jupyter-widgets/controls",
|
1977 |
+
"model_module_version": "1.5.0",
|
1978 |
+
"model_name": "ProgressStyleModel",
|
1979 |
+
"state": {
|
1980 |
+
"_model_module": "@jupyter-widgets/controls",
|
1981 |
+
"_model_module_version": "1.5.0",
|
1982 |
+
"_model_name": "ProgressStyleModel",
|
1983 |
+
"_view_count": null,
|
1984 |
+
"_view_module": "@jupyter-widgets/base",
|
1985 |
+
"_view_module_version": "1.2.0",
|
1986 |
+
"_view_name": "StyleView",
|
1987 |
+
"bar_color": null,
|
1988 |
+
"description_width": ""
|
1989 |
+
}
|
1990 |
+
},
|
1991 |
+
"d1ff84cb5591449abcc7dd3e37f9a2df": {
|
1992 |
+
"model_module": "@jupyter-widgets/controls",
|
1993 |
+
"model_module_version": "1.5.0",
|
1994 |
+
"model_name": "HTMLModel",
|
1995 |
+
"state": {
|
1996 |
+
"_dom_classes": [],
|
1997 |
+
"_model_module": "@jupyter-widgets/controls",
|
1998 |
+
"_model_module_version": "1.5.0",
|
1999 |
+
"_model_name": "HTMLModel",
|
2000 |
+
"_view_count": null,
|
2001 |
+
"_view_module": "@jupyter-widgets/controls",
|
2002 |
+
"_view_module_version": "1.5.0",
|
2003 |
+
"_view_name": "HTMLView",
|
2004 |
+
"description": "",
|
2005 |
+
"description_tooltip": null,
|
2006 |
+
"layout": "IPY_MODEL_a6e3c5ce0a3c49ffb3d7cbf92568fe47",
|
2007 |
+
"placeholder": "",
|
2008 |
+
"style": "IPY_MODEL_e084d47529ca4131b233ea3514a6344f",
|
2009 |
+
"value": " 159M/159M [00:04<00:00, 26.9MB/s]"
|
2010 |
+
}
|
2011 |
+
},
|
2012 |
+
"d3e6acd54d024d6791aab76232557721": {
|
2013 |
+
"model_module": "@jupyter-widgets/base",
|
2014 |
+
"model_module_version": "1.2.0",
|
2015 |
+
"model_name": "LayoutModel",
|
2016 |
+
"state": {
|
2017 |
+
"_model_module": "@jupyter-widgets/base",
|
2018 |
+
"_model_module_version": "1.2.0",
|
2019 |
+
"_model_name": "LayoutModel",
|
2020 |
+
"_view_count": null,
|
2021 |
+
"_view_module": "@jupyter-widgets/base",
|
2022 |
+
"_view_module_version": "1.2.0",
|
2023 |
+
"_view_name": "LayoutView",
|
2024 |
+
"align_content": null,
|
2025 |
+
"align_items": null,
|
2026 |
+
"align_self": null,
|
2027 |
+
"border": null,
|
2028 |
+
"bottom": null,
|
2029 |
+
"display": null,
|
2030 |
+
"flex": null,
|
2031 |
+
"flex_flow": null,
|
2032 |
+
"grid_area": null,
|
2033 |
+
"grid_auto_columns": null,
|
2034 |
+
"grid_auto_flow": null,
|
2035 |
+
"grid_auto_rows": null,
|
2036 |
+
"grid_column": null,
|
2037 |
+
"grid_gap": null,
|
2038 |
+
"grid_row": null,
|
2039 |
+
"grid_template_areas": null,
|
2040 |
+
"grid_template_columns": null,
|
2041 |
+
"grid_template_rows": null,
|
2042 |
+
"height": null,
|
2043 |
+
"justify_content": null,
|
2044 |
+
"justify_items": null,
|
2045 |
+
"left": null,
|
2046 |
+
"margin": null,
|
2047 |
+
"max_height": null,
|
2048 |
+
"max_width": null,
|
2049 |
+
"min_height": null,
|
2050 |
+
"min_width": null,
|
2051 |
+
"object_fit": null,
|
2052 |
+
"object_position": null,
|
2053 |
+
"order": null,
|
2054 |
+
"overflow": null,
|
2055 |
+
"overflow_x": null,
|
2056 |
+
"overflow_y": null,
|
2057 |
+
"padding": null,
|
2058 |
+
"right": null,
|
2059 |
+
"top": null,
|
2060 |
+
"visibility": null,
|
2061 |
+
"width": null
|
2062 |
+
}
|
2063 |
+
},
|
2064 |
+
"d722bbfffeaf4ea7a1060d10dc3a06db": {
|
2065 |
+
"model_module": "@jupyter-widgets/controls",
|
2066 |
+
"model_module_version": "1.5.0",
|
2067 |
+
"model_name": "HBoxModel",
|
2068 |
+
"state": {
|
2069 |
+
"_dom_classes": [],
|
2070 |
+
"_model_module": "@jupyter-widgets/controls",
|
2071 |
+
"_model_module_version": "1.5.0",
|
2072 |
+
"_model_name": "HBoxModel",
|
2073 |
+
"_view_count": null,
|
2074 |
+
"_view_module": "@jupyter-widgets/controls",
|
2075 |
+
"_view_module_version": "1.5.0",
|
2076 |
+
"_view_name": "HBoxView",
|
2077 |
+
"box_style": "",
|
2078 |
+
"children": [
|
2079 |
+
"IPY_MODEL_a4b5b93b88f549e8a4f37f3d48834ca9",
|
2080 |
+
"IPY_MODEL_82692c41501c487fad27c6b19836f46f",
|
2081 |
+
"IPY_MODEL_af8f433ef2f540c9bd70d14421904d83"
|
2082 |
+
],
|
2083 |
+
"layout": "IPY_MODEL_e81b0bf92adc4aadaafce4ee7d36421e"
|
2084 |
+
}
|
2085 |
+
},
|
2086 |
+
"db7ee45589e04749b80376e25ee377bb": {
|
2087 |
+
"model_module": "@jupyter-widgets/base",
|
2088 |
+
"model_module_version": "1.2.0",
|
2089 |
+
"model_name": "LayoutModel",
|
2090 |
+
"state": {
|
2091 |
+
"_model_module": "@jupyter-widgets/base",
|
2092 |
+
"_model_module_version": "1.2.0",
|
2093 |
+
"_model_name": "LayoutModel",
|
2094 |
+
"_view_count": null,
|
2095 |
+
"_view_module": "@jupyter-widgets/base",
|
2096 |
+
"_view_module_version": "1.2.0",
|
2097 |
+
"_view_name": "LayoutView",
|
2098 |
+
"align_content": null,
|
2099 |
+
"align_items": null,
|
2100 |
+
"align_self": null,
|
2101 |
+
"border": null,
|
2102 |
+
"bottom": null,
|
2103 |
+
"display": null,
|
2104 |
+
"flex": null,
|
2105 |
+
"flex_flow": null,
|
2106 |
+
"grid_area": null,
|
2107 |
+
"grid_auto_columns": null,
|
2108 |
+
"grid_auto_flow": null,
|
2109 |
+
"grid_auto_rows": null,
|
2110 |
+
"grid_column": null,
|
2111 |
+
"grid_gap": null,
|
2112 |
+
"grid_row": null,
|
2113 |
+
"grid_template_areas": null,
|
2114 |
+
"grid_template_columns": null,
|
2115 |
+
"grid_template_rows": null,
|
2116 |
+
"height": null,
|
2117 |
+
"justify_content": null,
|
2118 |
+
"justify_items": null,
|
2119 |
+
"left": null,
|
2120 |
+
"margin": null,
|
2121 |
+
"max_height": null,
|
2122 |
+
"max_width": null,
|
2123 |
+
"min_height": null,
|
2124 |
+
"min_width": null,
|
2125 |
+
"object_fit": null,
|
2126 |
+
"object_position": null,
|
2127 |
+
"order": null,
|
2128 |
+
"overflow": null,
|
2129 |
+
"overflow_x": null,
|
2130 |
+
"overflow_y": null,
|
2131 |
+
"padding": null,
|
2132 |
+
"right": null,
|
2133 |
+
"top": null,
|
2134 |
+
"visibility": null,
|
2135 |
+
"width": null
|
2136 |
+
}
|
2137 |
+
},
|
2138 |
+
"e084d47529ca4131b233ea3514a6344f": {
|
2139 |
+
"model_module": "@jupyter-widgets/controls",
|
2140 |
+
"model_module_version": "1.5.0",
|
2141 |
+
"model_name": "DescriptionStyleModel",
|
2142 |
+
"state": {
|
2143 |
+
"_model_module": "@jupyter-widgets/controls",
|
2144 |
+
"_model_module_version": "1.5.0",
|
2145 |
+
"_model_name": "DescriptionStyleModel",
|
2146 |
+
"_view_count": null,
|
2147 |
+
"_view_module": "@jupyter-widgets/base",
|
2148 |
+
"_view_module_version": "1.2.0",
|
2149 |
+
"_view_name": "StyleView",
|
2150 |
+
"description_width": ""
|
2151 |
+
}
|
2152 |
+
},
|
2153 |
+
"e33033ecda374ed4966ae5fccf6efe37": {
|
2154 |
+
"model_module": "@jupyter-widgets/controls",
|
2155 |
+
"model_module_version": "1.5.0",
|
2156 |
+
"model_name": "HTMLModel",
|
2157 |
+
"state": {
|
2158 |
+
"_dom_classes": [],
|
2159 |
+
"_model_module": "@jupyter-widgets/controls",
|
2160 |
+
"_model_module_version": "1.5.0",
|
2161 |
+
"_model_name": "HTMLModel",
|
2162 |
+
"_view_count": null,
|
2163 |
+
"_view_module": "@jupyter-widgets/controls",
|
2164 |
+
"_view_module_version": "1.5.0",
|
2165 |
+
"_view_name": "HTMLView",
|
2166 |
+
"description": "",
|
2167 |
+
"description_tooltip": null,
|
2168 |
+
"layout": "IPY_MODEL_a41cf7f5121a4068842bb5c7d2bc4d62",
|
2169 |
+
"placeholder": "",
|
2170 |
+
"style": "IPY_MODEL_f479a9629c414cb495a97b0741b0fe4b",
|
2171 |
+
"value": "Downloading: 100%"
|
2172 |
+
}
|
2173 |
+
},
|
2174 |
+
"e3414cc0456241eca109f4e9e115d16a": {
|
2175 |
+
"model_module": "@jupyter-widgets/controls",
|
2176 |
+
"model_module_version": "1.5.0",
|
2177 |
+
"model_name": "ProgressStyleModel",
|
2178 |
+
"state": {
|
2179 |
+
"_model_module": "@jupyter-widgets/controls",
|
2180 |
+
"_model_module_version": "1.5.0",
|
2181 |
+
"_model_name": "ProgressStyleModel",
|
2182 |
+
"_view_count": null,
|
2183 |
+
"_view_module": "@jupyter-widgets/base",
|
2184 |
+
"_view_module_version": "1.2.0",
|
2185 |
+
"_view_name": "StyleView",
|
2186 |
+
"bar_color": null,
|
2187 |
+
"description_width": ""
|
2188 |
+
}
|
2189 |
+
},
|
2190 |
+
"e81b0bf92adc4aadaafce4ee7d36421e": {
|
2191 |
+
"model_module": "@jupyter-widgets/base",
|
2192 |
+
"model_module_version": "1.2.0",
|
2193 |
+
"model_name": "LayoutModel",
|
2194 |
+
"state": {
|
2195 |
+
"_model_module": "@jupyter-widgets/base",
|
2196 |
+
"_model_module_version": "1.2.0",
|
2197 |
+
"_model_name": "LayoutModel",
|
2198 |
+
"_view_count": null,
|
2199 |
+
"_view_module": "@jupyter-widgets/base",
|
2200 |
+
"_view_module_version": "1.2.0",
|
2201 |
+
"_view_name": "LayoutView",
|
2202 |
+
"align_content": null,
|
2203 |
+
"align_items": null,
|
2204 |
+
"align_self": null,
|
2205 |
+
"border": null,
|
2206 |
+
"bottom": null,
|
2207 |
+
"display": null,
|
2208 |
+
"flex": null,
|
2209 |
+
"flex_flow": null,
|
2210 |
+
"grid_area": null,
|
2211 |
+
"grid_auto_columns": null,
|
2212 |
+
"grid_auto_flow": null,
|
2213 |
+
"grid_auto_rows": null,
|
2214 |
+
"grid_column": null,
|
2215 |
+
"grid_gap": null,
|
2216 |
+
"grid_row": null,
|
2217 |
+
"grid_template_areas": null,
|
2218 |
+
"grid_template_columns": null,
|
2219 |
+
"grid_template_rows": null,
|
2220 |
+
"height": null,
|
2221 |
+
"justify_content": null,
|
2222 |
+
"justify_items": null,
|
2223 |
+
"left": null,
|
2224 |
+
"margin": null,
|
2225 |
+
"max_height": null,
|
2226 |
+
"max_width": null,
|
2227 |
+
"min_height": null,
|
2228 |
+
"min_width": null,
|
2229 |
+
"object_fit": null,
|
2230 |
+
"object_position": null,
|
2231 |
+
"order": null,
|
2232 |
+
"overflow": null,
|
2233 |
+
"overflow_x": null,
|
2234 |
+
"overflow_y": null,
|
2235 |
+
"padding": null,
|
2236 |
+
"right": null,
|
2237 |
+
"top": null,
|
2238 |
+
"visibility": null,
|
2239 |
+
"width": null
|
2240 |
+
}
|
2241 |
+
},
|
2242 |
+
"f479a9629c414cb495a97b0741b0fe4b": {
|
2243 |
+
"model_module": "@jupyter-widgets/controls",
|
2244 |
+
"model_module_version": "1.5.0",
|
2245 |
+
"model_name": "DescriptionStyleModel",
|
2246 |
+
"state": {
|
2247 |
+
"_model_module": "@jupyter-widgets/controls",
|
2248 |
+
"_model_module_version": "1.5.0",
|
2249 |
+
"_model_name": "DescriptionStyleModel",
|
2250 |
+
"_view_count": null,
|
2251 |
+
"_view_module": "@jupyter-widgets/base",
|
2252 |
+
"_view_module_version": "1.2.0",
|
2253 |
+
"_view_name": "StyleView",
|
2254 |
+
"description_width": ""
|
2255 |
+
}
|
2256 |
+
}
|
2257 |
+
}
|
2258 |
+
}
|
2259 |
+
},
|
2260 |
+
"nbformat": 4,
|
2261 |
+
"nbformat_minor": 1
|
2262 |
+
}
|