marinone94 commited on
Commit
c369c05
·
1 Parent(s): d87b765

Add LM in training script

Browse files
.gitignore CHANGED
@@ -1 +1,2 @@
1
- *venv
 
 
1
+ *venv
2
+ .ipynb_checkpoints/
eval.py CHANGED
@@ -68,7 +68,7 @@ def main(args):
68
  dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
69
 
70
  # for testing: only process the first two examples as a test
71
- dataset = dataset.select(range(10))
72
 
73
  # load processor
74
  feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
 
68
  dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
69
 
70
  # for testing: only process the first two examples as a test
71
+ # dataset = dataset.select(range(10))
72
 
73
  # load processor
74
  feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
requirements.txt CHANGED
@@ -3,3 +3,5 @@ torch >= 1.5
3
  torchaudio
4
  librosa
5
  jiwer
 
 
 
3
  torchaudio
4
  librosa
5
  jiwer
6
+ wandb
7
+ pyctcdecode
run.sh CHANGED
@@ -31,4 +31,5 @@ python run_speech_recognition_ctc.py \
31
  --fp16 \
32
  --group_by_length \
33
  --do_train --do_eval \
34
- --push_to_hub
 
 
31
  --fp16 \
32
  --group_by_length \
33
  --do_train --do_eval \
34
+ --push_to_hub \
35
+ --push_lm_to_hub
run_speech_recognition_ctc.py CHANGED
@@ -31,6 +31,7 @@ import numpy as np
31
  import torch
32
  import wandb
33
  from datasets import DatasetDict, load_dataset, load_metric
 
34
 
35
  import transformers
36
  from transformers import (
@@ -43,6 +44,7 @@ from transformers import (
43
  Trainer,
44
  TrainingArguments,
45
  Wav2Vec2Processor,
 
46
  set_seed,
47
  )
48
  from transformers.trainer_utils import get_last_checkpoint, is_main_process
@@ -359,7 +361,8 @@ def main():
359
 
360
  # TODO: Replace with check of wandb env vars
361
  try:
362
- os.environ["WANDB_PROJECT"] = os.getcwd().split("/")[-1]
 
363
  wandb.login()
364
  training_args.report_to = ["wandb"]
365
  training_args.run_name = f"{datetime.datetime.utcnow()}".replace(" ", "T")
@@ -740,6 +743,23 @@ def main():
740
  trainer.push_to_hub(**kwargs)
741
  else:
742
  trainer.create_model_card(**kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743
 
744
  return results
745
 
 
31
  import torch
32
  import wandb
33
  from datasets import DatasetDict, load_dataset, load_metric
34
+ from pyctcdecode import build_ctcdecoder
35
 
36
  import transformers
37
  from transformers import (
 
44
  Trainer,
45
  TrainingArguments,
46
  Wav2Vec2Processor,
47
+ Wav2Vec2ProcessorWithLM,
48
  set_seed,
49
  )
50
  from transformers.trainer_utils import get_last_checkpoint, is_main_process
 
361
 
362
  # TODO: Replace with check of wandb env vars
363
  try:
364
+ repo_name = os.getcwd().split("/")[-1]
365
+ os.environ["WANDB_PROJECT"] = repo_name
366
  wandb.login()
367
  training_args.report_to = ["wandb"]
368
  training_args.run_name = f"{datetime.datetime.utcnow()}".replace(" ", "T")
 
743
  trainer.push_to_hub(**kwargs)
744
  else:
745
  trainer.create_model_card(**kwargs)
746
+
747
+ if training_args.push_lm_to_hub:
748
+ vocab_dict = processor.tokenizer.get_vocab()
749
+ sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
750
+
751
+ decoder = build_ctcdecoder(
752
+ labels=list(sorted_vocab_dict.keys()),
753
+ kenlm_model_path="5gram_sv_lm.bin",
754
+ )
755
+
756
+ processor_with_lm = Wav2Vec2ProcessorWithLM(
757
+ feature_extractor=processor.feature_extractor,
758
+ tokenizer=processor.tokenizer,
759
+ decoder=decoder
760
+ )
761
+ processor_with_lm.save_pretrained(repo_name)
762
+ processor_with_lm.push_to_hub(**kwargs)
763
 
764
  return results
765
 
train_n_gram_lm_with_KenLM.ipynb ADDED
@@ -0,0 +1,2262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Train n-gram language model with KenLM on Colab"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {
13
+ "id": "PtkgQE7--Ufg"
14
+ },
15
+ "source": [
16
+ "See https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Boosting_Wav2Vec2_with_n_grams_in_Transformers.ipynb#scrollTo=X9qg4FPt2zi8 for detailed explanation on how to use KenLM to boost wav2vec2 fine-tuned models on 🤗"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {
22
+ "id": "VBCqCboC6Soc"
23
+ },
24
+ "source": [
25
+ "Install KenLM"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": 4,
31
+ "metadata": {
32
+ "colab": {
33
+ "base_uri": "https://localhost:8080/"
34
+ },
35
+ "id": "-CKLr9bI6GPE",
36
+ "outputId": "0c6d917e-4896-4e35-c92f-4b085f77c893"
37
+ },
38
+ "outputs": [
39
+ {
40
+ "name": "stdout",
41
+ "output_type": "stream",
42
+ "text": [
43
+ "The operation couldn’t be completed. Unable to locate a Java Runtime that supports apt.\r\n",
44
+ "Please visit http://www.java.com for information on installing Java.\r\n",
45
+ "\r\n"
46
+ ]
47
+ }
48
+ ],
49
+ "source": [
50
+ "!sudo apt install build-essential cmake libboost-system-dev libboost-thread-dev libboost-program-options-dev libboost-test-dev libeigen3-dev zlib1g-dev libbz2-dev liblzma-dev"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "metadata": {
57
+ "colab": {
58
+ "base_uri": "https://localhost:8080/"
59
+ },
60
+ "id": "TIlrFi3M6XO4",
61
+ "outputId": "7c986a6f-f84c-4d29-b3f8-941cb85e6e8d"
62
+ },
63
+ "outputs": [],
64
+ "source": [
65
+ "!wget -O - https://kheafield.com/code/kenlm.tar.gz | tar xz"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 3,
71
+ "metadata": {
72
+ "colab": {
73
+ "base_uri": "https://localhost:8080/"
74
+ },
75
+ "id": "KGwSg6Bl6a8Y",
76
+ "outputId": "025562ab-679d-4986-9474-334dc8bd834e"
77
+ },
78
+ "outputs": [
79
+ {
80
+ "name": "stdout",
81
+ "output_type": "stream",
82
+ "text": [
83
+ "-- The C compiler identification is GNU 7.5.0\n",
84
+ "-- The CXX compiler identification is GNU 7.5.0\n",
85
+ "-- Check for working C compiler: /usr/bin/cc\n",
86
+ "-- Check for working C compiler: /usr/bin/cc -- works\n",
87
+ "-- Detecting C compiler ABI info\n",
88
+ "-- Detecting C compiler ABI info - done\n",
89
+ "-- Detecting C compile features\n",
90
+ "-- Detecting C compile features - done\n",
91
+ "-- Check for working CXX compiler: /usr/bin/c++\n",
92
+ "-- Check for working CXX compiler: /usr/bin/c++ -- works\n",
93
+ "-- Detecting CXX compiler ABI info\n",
94
+ "-- Detecting CXX compiler ABI info - done\n",
95
+ "-- Detecting CXX compile features\n",
96
+ "-- Detecting CXX compile features - done\n",
97
+ "-- Looking for pthread.h\n",
98
+ "-- Looking for pthread.h - found\n",
99
+ "-- Looking for pthread_create\n",
100
+ "-- Looking for pthread_create - not found\n",
101
+ "-- Looking for pthread_create in pthreads\n",
102
+ "-- Looking for pthread_create in pthreads - not found\n",
103
+ "-- Looking for pthread_create in pthread\n",
104
+ "-- Looking for pthread_create in pthread - found\n",
105
+ "-- Found Threads: TRUE \n",
106
+ "-- Boost version: 1.65.1\n",
107
+ "-- Found the following Boost libraries:\n",
108
+ "-- program_options\n",
109
+ "-- system\n",
110
+ "-- thread\n",
111
+ "-- unit_test_framework\n",
112
+ "-- chrono\n",
113
+ "-- date_time\n",
114
+ "-- atomic\n",
115
+ "-- Check if compiler accepts -pthread\n",
116
+ "-- Check if compiler accepts -pthread - yes\n",
117
+ "-- Found ZLIB: /usr/lib/x86_64-linux-gnu/libz.so (found version \"1.2.11\") \n",
118
+ "-- Found BZip2: /usr/lib/x86_64-linux-gnu/libbz2.so (found version \"1.0.6\") \n",
119
+ "-- Looking for BZ2_bzCompressInit\n",
120
+ "-- Looking for BZ2_bzCompressInit - found\n",
121
+ "-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
122
+ "-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
123
+ "-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
124
+ "-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
125
+ "-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
126
+ "-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
127
+ "-- Found LibLZMA: /usr/include (found version \"5.2.2\") \n",
128
+ "-- Found OpenMP_C: -fopenmp (found version \"4.5\") \n",
129
+ "-- Found OpenMP_CXX: -fopenmp (found version \"4.5\") \n",
130
+ "-- Found OpenMP: TRUE (found version \"4.5\") \n",
131
+ "-- Configuring done\n",
132
+ "-- Generating done\n",
133
+ "-- Build files have been written to: /content/kenlm/build\n",
134
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_util\u001b[0m\n",
135
+ "[ 2%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum.cc.o\u001b[0m\n",
136
+ "[ 2%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum-dtoa.cc.o\u001b[0m\n",
137
+ "[ 3%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/cached-powers.cc.o\u001b[0m\n",
138
+ "[ 4%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/diy-fp.cc.o\u001b[0m\n",
139
+ "[ 5%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/double-conversion.cc.o\u001b[0m\n",
140
+ "[ 6%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fast-dtoa.cc.o\u001b[0m\n",
141
+ "[ 7%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fixed-dtoa.cc.o\u001b[0m\n",
142
+ "[ 8%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/strtod.cc.o\u001b[0m\n",
143
+ "[ 9%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/chain.cc.o\u001b[0m\n",
144
+ "[ 10%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/count_records.cc.o\u001b[0m\n",
145
+ "[ 11%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/io.cc.o\u001b[0m\n",
146
+ "[ 12%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/line_input.cc.o\u001b[0m\n",
147
+ "[ 13%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/multi_progress.cc.o\u001b[0m\n",
148
+ "[ 14%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/rewindable_stream.cc.o\u001b[0m\n",
149
+ "[ 15%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/bit_packing.cc.o\u001b[0m\n",
150
+ "[ 16%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/ersatz_progress.cc.o\u001b[0m\n",
151
+ "[ 17%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/exception.cc.o\u001b[0m\n",
152
+ "[ 18%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file.cc.o\u001b[0m\n",
153
+ "[ 19%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file_piece.cc.o\u001b[0m\n",
154
+ "[ 20%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/float_to_string.cc.o\u001b[0m\n",
155
+ "[ 21%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/integer_to_string.cc.o\u001b[0m\n",
156
+ "[ 22%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/mmap.cc.o\u001b[0m\n",
157
+ "[ 23%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/murmur_hash.cc.o\u001b[0m\n",
158
+ "[ 25%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/parallel_read.cc.o\u001b[0m\n",
159
+ "[ 26%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/pool.cc.o\u001b[0m\n",
160
+ "[ 27%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/read_compressed.cc.o\u001b[0m\n",
161
+ "[ 28%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/scoped.cc.o\u001b[0m\n",
162
+ "[ 29%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/spaces.cc.o\u001b[0m\n",
163
+ "[ 30%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/string_piece.cc.o\u001b[0m\n",
164
+ "[ 31%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/usage.cc.o\u001b[0m\n",
165
+ "[ 32%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm_util.a\u001b[0m\n",
166
+ "[ 32%] Built target kenlm_util\n",
167
+ "\u001b[35m\u001b[1mScanning dependencies of target probing_hash_table_benchmark\u001b[0m\n",
168
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm\u001b[0m\n",
169
+ "[ 33%] \u001b[32mBuilding CXX object util/CMakeFiles/probing_hash_table_benchmark.dir/probing_hash_table_benchmark_main.cc.o\u001b[0m\n",
170
+ "[ 34%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/bhiksha.cc.o\u001b[0m\n",
171
+ "[ 35%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/binary_format.cc.o\u001b[0m\n",
172
+ "[ 36%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/config.cc.o\u001b[0m\n",
173
+ "[ 37%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/lm_exception.cc.o\u001b[0m\n",
174
+ "[ 38%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/model.cc.o\u001b[0m\n",
175
+ "[ 39%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/quantize.cc.o\u001b[0m\n",
176
+ "[ 40%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/read_arpa.cc.o\u001b[0m\n",
177
+ "[ 41%] \u001b[32m\u001b[1mLinking CXX executable ../bin/probing_hash_table_benchmark\u001b[0m\n",
178
+ "[ 41%] Built target probing_hash_table_benchmark\n",
179
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_filter\u001b[0m\n",
180
+ "[ 42%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/arpa_io.cc.o\u001b[0m\n",
181
+ "[ 43%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_hashed.cc.o\u001b[0m\n",
182
+ "[ 44%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/phrase.cc.o\u001b[0m\n",
183
+ "[ 45%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_trie.cc.o\u001b[0m\n",
184
+ "[ 46%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/vocab.cc.o\u001b[0m\n",
185
+ "[ 47%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_filter.a\u001b[0m\n",
186
+ "[ 47%] Built target kenlm_filter\n",
187
+ "[ 48%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/sizes.cc.o\u001b[0m\n",
188
+ "[ 50%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie.cc.o\u001b[0m\n",
189
+ "[ 51%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie_sort.cc.o\u001b[0m\n",
190
+ "[ 52%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/value_build.cc.o\u001b[0m\n",
191
+ "[ 53%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/virtual_interface.cc.o\u001b[0m\n",
192
+ "[ 54%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/vocab.cc.o\u001b[0m\n",
193
+ "[ 55%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/model_buffer.cc.o\u001b[0m\n",
194
+ "[ 56%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/print.cc.o\u001b[0m\n",
195
+ "[ 57%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/renumber.cc.o\u001b[0m\n",
196
+ "[ 58%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/size_option.cc.o\u001b[0m\n",
197
+ "[ 59%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm.a\u001b[0m\n",
198
+ "[ 59%] Built target kenlm\n",
199
+ "\u001b[35m\u001b[1mScanning dependencies of target build_binary\u001b[0m\n",
200
+ "\u001b[35m\u001b[1mScanning dependencies of target fragment\u001b[0m\n",
201
+ "[ 60%] \u001b[32mBuilding CXX object lm/CMakeFiles/fragment.dir/fragment_main.cc.o\u001b[0m\n",
202
+ "[ 61%] \u001b[32mBuilding CXX object lm/CMakeFiles/build_binary.dir/build_binary_main.cc.o\u001b[0m\n",
203
+ "[ 62%] \u001b[32m\u001b[1mLinking CXX executable ../bin/fragment\u001b[0m\n",
204
+ "[ 63%] \u001b[32m\u001b[1mLinking CXX executable ../bin/build_binary\u001b[0m\n",
205
+ "[ 63%] Built target fragment\n",
206
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_benchmark\u001b[0m\n",
207
+ "[ 64%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm_benchmark.dir/kenlm_benchmark_main.cc.o\u001b[0m\n",
208
+ "[ 64%] Built target build_binary\n",
209
+ "\u001b[35m\u001b[1mScanning dependencies of target query\u001b[0m\n",
210
+ "[ 65%] \u001b[32mBuilding CXX object lm/CMakeFiles/query.dir/query_main.cc.o\u001b[0m\n",
211
+ "[ 66%] \u001b[32m\u001b[1mLinking CXX executable ../bin/query\u001b[0m\n",
212
+ "[ 66%] Built target query\n",
213
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_builder\u001b[0m\n",
214
+ "[ 67%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/adjust_counts.cc.o\u001b[0m\n",
215
+ "[ 68%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/corpus_count.cc.o\u001b[0m\n",
216
+ "[ 69%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/initial_probabilities.cc.o\u001b[0m\n",
217
+ "[ 70%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/interpolate.cc.o\u001b[0m\n",
218
+ "[ 71%] \u001b[32m\u001b[1mLinking CXX executable ../bin/kenlm_benchmark\u001b[0m\n",
219
+ "[ 72%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/output.cc.o\u001b[0m\n",
220
+ "[ 72%] Built target kenlm_benchmark\n",
221
+ "\u001b[35m\u001b[1mScanning dependencies of target phrase_table_vocab\u001b[0m\n",
222
+ "[ 73%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/phrase_table_vocab.dir/phrase_table_vocab_main.cc.o\u001b[0m\n",
223
+ "[ 75%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/phrase_table_vocab\u001b[0m\n",
224
+ "[ 75%] Built target phrase_table_vocab\n",
225
+ "\u001b[35m\u001b[1mScanning dependencies of target filter\u001b[0m\n",
226
+ "[ 76%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/filter.dir/filter_main.cc.o\u001b[0m\n",
227
+ "[ 77%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/pipeline.cc.o\u001b[0m\n",
228
+ "[ 78%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_builder.a\u001b[0m\n",
229
+ "[ 78%] Built target kenlm_builder\n",
230
+ "\u001b[35m\u001b[1mScanning dependencies of target kenlm_interpolate\u001b[0m\n",
231
+ "[ 79%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/backoff_reunification.cc.o\u001b[0m\n",
232
+ "[ 80%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/bounded_sequence_encoding.cc.o\u001b[0m\n",
233
+ "[ 81%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/merge_probabilities.cc.o\u001b[0m\n",
234
+ "[ 82%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/filter\u001b[0m\n",
235
+ "[ 82%] Built target filter\n",
236
+ "\u001b[35m\u001b[1mScanning dependencies of target count_ngrams\u001b[0m\n",
237
+ "[ 83%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/count_ngrams.dir/count_ngrams_main.cc.o\u001b[0m\n",
238
+ "[ 84%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/merge_vocab.cc.o\u001b[0m\n",
239
+ "[ 85%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/normalize.cc.o\u001b[0m\n",
240
+ "[ 86%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/pipeline.cc.o\u001b[0m\n",
241
+ "[ 87%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/count_ngrams\u001b[0m\n",
242
+ "[ 87%] Built target count_ngrams\n",
243
+ "\u001b[35m\u001b[1mScanning dependencies of target lmplz\u001b[0m\n",
244
+ "[ 88%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/lmplz.dir/lmplz_main.cc.o\u001b[0m\n",
245
+ "[ 89%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/lmplz\u001b[0m\n",
246
+ "[ 89%] Built target lmplz\n",
247
+ "[ 90%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/split_worker.cc.o\u001b[0m\n",
248
+ "[ 91%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_derivatives.cc.o\u001b[0m\n",
249
+ "[ 92%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_instances.cc.o\u001b[0m\n",
250
+ "[ 93%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/tune_weights.cc.o\u001b[0m\n",
251
+ "[ 94%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/kenlm_interpolate.dir/universal_vocab.cc.o\u001b[0m\n",
252
+ "[ 95%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_interpolate.a\u001b[0m\n",
253
+ "[ 95%] Built target kenlm_interpolate\n",
254
+ "\u001b[35m\u001b[1mScanning dependencies of target streaming_example\u001b[0m\n",
255
+ "\u001b[35m\u001b[1mScanning dependencies of target interpolate\u001b[0m\n",
256
+ "[ 96%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/streaming_example.dir/streaming_example_main.cc.o\u001b[0m\n",
257
+ "[ 97%] \u001b[32mBuilding CXX object lm/interpolate/CMakeFiles/interpolate.dir/interpolate_main.cc.o\u001b[0m\n",
258
+ "[ 98%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/interpolate\u001b[0m\n",
259
+ "[ 98%] Built target interpolate\n",
260
+ "[100%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/streaming_example\u001b[0m\n",
261
+ "[100%] Built target streaming_example\n",
262
+ "build_binary fragment\t lmplz\t\t\t query\n",
263
+ "count_ngrams interpolate phrase_table_vocab\t streaming_example\n",
264
+ "filter\t kenlm_benchmark probing_hash_table_benchmark\n"
265
+ ]
266
+ }
267
+ ],
268
+ "source": [
269
+ "!mkdir kenlm/build && cd kenlm/build && cmake .. && make -j2\n",
270
+ "!ls kenlm/build/bin"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "markdown",
275
+ "metadata": {
276
+ "id": "rUUGXbDy6x7r"
277
+ },
278
+ "source": [
279
+ "Install 🤗 dependencies"
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": 4,
285
+ "metadata": {
286
+ "colab": {
287
+ "base_uri": "https://localhost:8080/"
288
+ },
289
+ "id": "Gs8LAZKr6wF8",
290
+ "outputId": "2a1785bb-f254-487a-ef4c-e496f037145a"
291
+ },
292
+ "outputs": [
293
+ {
294
+ "name": "stdout",
295
+ "output_type": "stream",
296
+ "text": [
297
+ "Collecting datasets\n",
298
+ " Downloading datasets-1.18.0-py3-none-any.whl (311 kB)\n",
299
+ "\u001b[K |████████████████████████████████| 311 kB 5.3 MB/s \n",
300
+ "\u001b[?25hCollecting transformers\n",
301
+ " Downloading transformers-4.15.0-py3-none-any.whl (3.4 MB)\n",
302
+ "\u001b[K |████████████████████████████████| 3.4 MB 39.8 MB/s \n",
303
+ "\u001b[?25hRequirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (2.23.0)\n",
304
+ "Collecting aiohttp\n",
305
+ " Downloading aiohttp-3.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n",
306
+ "\u001b[K |████████████████████████████████| 1.1 MB 54.7 MB/s \n",
307
+ "\u001b[?25hRequirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (3.0.0)\n",
308
+ "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from datasets) (1.19.5)\n",
309
+ "Collecting xxhash\n",
310
+ " Downloading xxhash-2.0.2-cp37-cp37m-manylinux2010_x86_64.whl (243 kB)\n",
311
+ "\u001b[K |████████████████████████████████| 243 kB 41.5 MB/s \n",
312
+ "\u001b[?25hRequirement already satisfied: dill in /usr/local/lib/python3.7/dist-packages (from datasets) (0.3.4)\n",
313
+ "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.7/dist-packages (from datasets) (4.62.3)\n",
314
+ "Collecting huggingface-hub<1.0.0,>=0.1.0\n",
315
+ " Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)\n",
316
+ "\u001b[K |████████████████████████████████| 67 kB 5.1 MB/s \n",
317
+ "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from datasets) (21.3)\n",
318
+ "Collecting fsspec[http]>=2021.05.0\n",
319
+ " Downloading fsspec-2022.1.0-py3-none-any.whl (133 kB)\n",
320
+ "\u001b[K |████████████████████████████████| 133 kB 50.2 MB/s \n",
321
+ "\u001b[?25hRequirement already satisfied: multiprocess in /usr/local/lib/python3.7/dist-packages (from datasets) (0.70.12.2)\n",
322
+ "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from datasets) (4.10.0)\n",
323
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from datasets) (1.1.5)\n",
324
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.4.2)\n",
325
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.10.0.2)\n",
326
+ "Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.13)\n",
327
+ "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->datasets) (3.0.6)\n",
328
+ "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (3.0.4)\n",
329
+ "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (1.24.3)\n",
330
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2021.10.8)\n",
331
+ "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2.10)\n",
332
+ "Collecting pyyaml\n",
333
+ " Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)\n",
334
+ "\u001b[K |████████████████████████████████| 596 kB 56.2 MB/s \n",
335
+ "\u001b[?25hCollecting tokenizers<0.11,>=0.10.1\n",
336
+ " Downloading tokenizers-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.3 MB)\n",
337
+ "\u001b[K |████████████████████████████████| 3.3 MB 46.1 MB/s \n",
338
+ "\u001b[?25hCollecting sacremoses\n",
339
+ " Downloading sacremoses-0.0.47-py2.py3-none-any.whl (895 kB)\n",
340
+ "\u001b[K |████████████████████████████████| 895 kB 51.6 MB/s \n",
341
+ "\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)\n",
342
+ "Collecting frozenlist>=1.1.1\n",
343
+ " Downloading frozenlist-1.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144 kB)\n",
344
+ "\u001b[K |████████████████████████████████| 144 kB 51.5 MB/s \n",
345
+ "\u001b[?25hCollecting yarl<2.0,>=1.0\n",
346
+ " Downloading yarl-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (271 kB)\n",
347
+ "\u001b[K |████████████████████████████████| 271 kB 56.7 MB/s \n",
348
+ "\u001b[?25hCollecting asynctest==0.13.0\n",
349
+ " Downloading asynctest-0.13.0-py3-none-any.whl (26 kB)\n",
350
+ "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (2.0.10)\n",
351
+ "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (21.4.0)\n",
352
+ "Collecting multidict<7.0,>=4.5\n",
353
+ " Downloading multidict-6.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (94 kB)\n",
354
+ "\u001b[K |████████████████████████████████| 94 kB 3.0 MB/s \n",
355
+ "\u001b[?25hCollecting aiosignal>=1.1.2\n",
356
+ " Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n",
357
+ "Collecting async-timeout<5.0,>=4.0.0a3\n",
358
+ " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
359
+ "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->datasets) (3.7.0)\n",
360
+ "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2018.9)\n",
361
+ "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2.8.2)\n",
362
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n",
363
+ "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2)\n",
364
+ "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.1.0)\n",
365
+ "Installing collected packages: multidict, frozenlist, yarl, asynctest, async-timeout, aiosignal, pyyaml, fsspec, aiohttp, xxhash, tokenizers, sacremoses, huggingface-hub, transformers, datasets\n",
366
+ " Attempting uninstall: pyyaml\n",
367
+ " Found existing installation: PyYAML 3.13\n",
368
+ " Uninstalling PyYAML-3.13:\n",
369
+ " Successfully uninstalled PyYAML-3.13\n",
370
+ "Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 async-timeout-4.0.2 asynctest-0.13.0 datasets-1.18.0 frozenlist-1.3.0 fsspec-2022.1.0 huggingface-hub-0.4.0 multidict-6.0.2 pyyaml-6.0 sacremoses-0.0.47 tokenizers-0.10.3 transformers-4.15.0 xxhash-2.0.2 yarl-1.7.2\n"
371
+ ]
372
+ }
373
+ ],
374
+ "source": [
375
+ "!pip install datasets transformers"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "markdown",
380
+ "metadata": {
381
+ "id": "6RoHBmOz66fz"
382
+ },
383
+ "source": [
384
+ "Load preprocessed dataset from 🤗 and write it to file as required by KenLM"
385
+ ]
386
+ },
387
+ {
388
+ "cell_type": "code",
389
+ "execution_count": 5,
390
+ "metadata": {
391
+ "colab": {
392
+ "base_uri": "https://localhost:8080/",
393
+ "height": 216,
394
+ "referenced_widgets": [
395
+ "ad5d7b0bc9ad4e228b3bc76bc975cc47",
396
+ "5925567ffea2436691c4ed3b7b147c17",
397
+ "799acae3451445f0a3616b8932f2e3f3",
398
+ "1714ea91694842339756f26b2fa9c725",
399
+ "b5d6b069468246abbb3207f3df6f9dde",
400
+ "5a9c9d4b60e54a3bb64c576707bd9736",
401
+ "789d5845a82e48fe9c629af743b5b1f0",
402
+ "e3414cc0456241eca109f4e9e115d16a",
403
+ "d3e6acd54d024d6791aab76232557721",
404
+ "6b43ea2d93c04965a4539b3ef839893b",
405
+ "4958b4c72d0c48af9a77974fc4ed449c",
406
+ "d722bbfffeaf4ea7a1060d10dc3a06db",
407
+ "e81b0bf92adc4aadaafce4ee7d36421e",
408
+ "a4b5b93b88f549e8a4f37f3d48834ca9",
409
+ "82692c41501c487fad27c6b19836f46f",
410
+ "af8f433ef2f540c9bd70d14421904d83",
411
+ "5e469744bf6a4813983ae8ee727c1c5e",
412
+ "34c5f87238cb4f13a03b207aa7dc1d18",
413
+ "c7955974289a4f448b422d7e4640131a",
414
+ "db7ee45589e04749b80376e25ee377bb",
415
+ "34d9460b112c419885bbff5211674cb3",
416
+ "033cb43d32314d279a7b9e1e86bbccdc",
417
+ "6a7e3547dc4141e7b5937f2baff58cbf",
418
+ "921a3c1f50a24979838fd560c2cea9e0",
419
+ "e33033ecda374ed4966ae5fccf6efe37",
420
+ "52a852c0f98c49aa9e5edfdd4f91e4ca",
421
+ "d1ff84cb5591449abcc7dd3e37f9a2df",
422
+ "f479a9629c414cb495a97b0741b0fe4b",
423
+ "a41cf7f5121a4068842bb5c7d2bc4d62",
424
+ "31b2d7d8d9054c8fb47bf1b58043aee1",
425
+ "23c9da8dd7bf4be9a23357806ebfc036",
426
+ "e084d47529ca4131b233ea3514a6344f",
427
+ "a6e3c5ce0a3c49ffb3d7cbf92568fe47",
428
+ "a1eca879a11f414f8173b0c2c260f4c3",
429
+ "75130a60f93b49c8bee0986665121d02",
430
+ "328cea1a2aac4fb58bceeaf126b99371",
431
+ "662d61fdd89d434785e74a7038427fbc",
432
+ "670d4f16a7e44144afc0ac70eea59325",
433
+ "7f92331b29fd49a68815b6d7389c1005",
434
+ "c710ba94fd65486cbcbe1d402919e27f",
435
+ "5951d1bafdd548b6b835b28cf9960533",
436
+ "adcffda7f78c4a1c8bdc6010c8704292",
437
+ "2c37aaee1f524837b477dc584209733a",
438
+ "0bee4735e017471fa8679ad984b88633"
439
+ ]
440
+ },
441
+ "id": "0bDpNg9c6mUu",
442
+ "outputId": "677d294f-2e37-48d5-bab0-6e21d1b4fe30"
443
+ },
444
+ "outputs": [
445
+ {
446
+ "data": {
447
+ "application/vnd.jupyter.widget-view+json": {
448
+ "model_id": "ad5d7b0bc9ad4e228b3bc76bc975cc47",
449
+ "version_major": 2,
450
+ "version_minor": 0
451
+ },
452
+ "text/plain": [
453
+ "Downloading: 0%| | 0.00/1.16k [00:00<?, ?B/s]"
454
+ ]
455
+ },
456
+ "metadata": {},
457
+ "output_type": "display_data"
458
+ },
459
+ {
460
+ "name": "stderr",
461
+ "output_type": "stream",
462
+ "text": [
463
+ "Using custom data configuration hf-test--swedish_corpora_parliament_processed-56ded20e2faa0852\n"
464
+ ]
465
+ },
466
+ {
467
+ "name": "stdout",
468
+ "output_type": "stream",
469
+ "text": [
470
+ "Downloading and preparing dataset europarl_bilingual/en-sv (download: 151.40 MiB, generated: 278.82 MiB, post-processed: Unknown size, total: 430.21 MiB) to /root/.cache/huggingface/datasets/parquet/hf-test--swedish_corpora_parliament_processed-56ded20e2faa0852/0.0.0/1638526fd0e8d960534e2155dc54fdff8dce73851f21f031d2fb9c2cf757c121...\n"
471
+ ]
472
+ },
473
+ {
474
+ "data": {
475
+ "application/vnd.jupyter.widget-view+json": {
476
+ "model_id": "d722bbfffeaf4ea7a1060d10dc3a06db",
477
+ "version_major": 2,
478
+ "version_minor": 0
479
+ },
480
+ "text/plain": [
481
+ " 0%| | 0/1 [00:00<?, ?it/s]"
482
+ ]
483
+ },
484
+ "metadata": {},
485
+ "output_type": "display_data"
486
+ },
487
+ {
488
+ "data": {
489
+ "application/vnd.jupyter.widget-view+json": {
490
+ "model_id": "6a7e3547dc4141e7b5937f2baff58cbf",
491
+ "version_major": 2,
492
+ "version_minor": 0
493
+ },
494
+ "text/plain": [
495
+ "Downloading: 0%| | 0.00/159M [00:00<?, ?B/s]"
496
+ ]
497
+ },
498
+ "metadata": {},
499
+ "output_type": "display_data"
500
+ },
501
+ {
502
+ "data": {
503
+ "application/vnd.jupyter.widget-view+json": {
504
+ "model_id": "a1eca879a11f414f8173b0c2c260f4c3",
505
+ "version_major": 2,
506
+ "version_minor": 0
507
+ },
508
+ "text/plain": [
509
+ " 0%| | 0/1 [00:00<?, ?it/s]"
510
+ ]
511
+ },
512
+ "metadata": {},
513
+ "output_type": "display_data"
514
+ },
515
+ {
516
+ "name": "stdout",
517
+ "output_type": "stream",
518
+ "text": [
519
+ "Dataset parquet downloaded and prepared to /root/.cache/huggingface/datasets/parquet/hf-test--swedish_corpora_parliament_processed-56ded20e2faa0852/0.0.0/1638526fd0e8d960534e2155dc54fdff8dce73851f21f031d2fb9c2cf757c121. Subsequent calls will reuse this data.\n"
520
+ ]
521
+ }
522
+ ],
523
+ "source": [
524
+ "from datasets import load_dataset\n",
525
+ "\n",
526
+ "# change to your dataset path\n",
527
+ "username = \"hf-test\" \n",
528
+ "target_lang = \"sv\"\n",
529
+ "\n",
530
+ "dataset = load_dataset(f\"{username}/{target_lang}_corpora_parliament_processed\", split=\"train\")\n",
531
+ "\n",
532
+ "with open(\"text.txt\", \"w\") as file:\n",
533
+ " file.write(\" \".join(dataset[\"text\"]))"
534
+ ]
535
+ },
536
+ {
537
+ "cell_type": "markdown",
538
+ "metadata": {
539
+ "id": "z8PqeGC17jD8"
540
+ },
541
+ "source": [
542
+ "Train 5-gram language model"
543
+ ]
544
+ },
545
+ {
546
+ "cell_type": "code",
547
+ "execution_count": 6,
548
+ "metadata": {
549
+ "colab": {
550
+ "base_uri": "https://localhost:8080/"
551
+ },
552
+ "id": "_8KoINuj7h-1",
553
+ "outputId": "26e0622d-6cb6-4329-e722-91ae9df263c7"
554
+ },
555
+ "outputs": [
556
+ {
557
+ "name": "stdout",
558
+ "output_type": "stream",
559
+ "text": [
560
+ "=== 1/5 Counting and sorting n-grams ===\n",
561
+ "Reading /content/text.txt\n",
562
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
563
+ "tcmalloc: large alloc 1918697472 bytes == 0x5623caa4e000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8cec51e 0x5623c8ccb2eb 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
564
+ "tcmalloc: large alloc 8953896960 bytes == 0x56243d01e000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccb308 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
565
+ "****************************************************************************************************\n",
566
+ "Unigram tokens 42153890 types 360209\n",
567
+ "=== 2/5 Calculating and sorting adjusted counts ===\n",
568
+ "Chain sizes: 1:4322508 2:1062773568 3:1992700672 4:3188320768 5:4649634816\n",
569
+ "tcmalloc: large alloc 4649639936 bytes == 0x5623caa4e000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccb8d7 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
570
+ "tcmalloc: large alloc 1992704000 bytes == 0x56251f640000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccbcdd 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
571
+ "tcmalloc: large alloc 3188326400 bytes == 0x5626533e4000 @ 0x7fe627aa41e7 0x5623c8d517a2 0x5623c8d407ca 0x5623c8d41208 0x5623c8ccbcdd 0x5623c8cb7066 0x7fe625c3dbf7 0x5623c8cb8baa\n",
572
+ "Statistics:\n",
573
+ "1 360208 D1=0.686222 D2=1.01595 D3+=1.33685\n",
574
+ "2 5476741 D1=0.761523 D2=1.06735 D3+=1.32559\n",
575
+ "3 18177681 D1=0.839918 D2=1.12061 D3+=1.33794\n",
576
+ "4 30374983 D1=0.909146 D2=1.20496 D3+=1.37235\n",
577
+ "5 37231651 D1=0.944104 D2=1.25164 D3+=1.344\n",
578
+ "Memory estimate for binary LM:\n",
579
+ "type MB\n",
580
+ "probing 1884 assuming -p 1.5\n",
581
+ "probing 2195 assuming -r models -p 1.5\n",
582
+ "trie 922 without quantization\n",
583
+ "trie 518 assuming -q 8 -b 8 quantization \n",
584
+ "trie 806 assuming -a 22 array pointer compression\n",
585
+ "trie 401 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
586
+ "=== 3/5 Calculating and sorting initial probabilities ===\n",
587
+ "Chain sizes: 1:4322496 2:87627856 3:363553620 4:728999592 5:1042486228\n",
588
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
589
+ "####################################################################################################\n",
590
+ "=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
591
+ "Chain sizes: 1:4322496 2:87627856 3:363553620 4:728999592 5:1042486228\n",
592
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
593
+ "####################################################################################################\n",
594
+ "=== 5/5 Writing ARPA model ===\n",
595
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
596
+ "****************************************************************************************************\n",
597
+ "Name:lmplz\tVmPeak:14181536 kB\tVmRSS:2199072 kB\tRSSMax:4117540 kB\tuser:125.411\tsys:25.1745\tCPU:150.586\treal:290.479\n"
598
+ ]
599
+ }
600
+ ],
601
+ "source": [
602
+ "!kenlm/build/bin/lmplz -o 5 <\"text.txt\" > \"5gram.arpa\""
603
+ ]
604
+ },
605
+ {
606
+ "cell_type": "markdown",
607
+ "metadata": {
608
+ "id": "ZJ5OKh358nwR"
609
+ },
610
+ "source": [
611
+ "Check head of file"
612
+ ]
613
+ },
614
+ {
615
+ "cell_type": "code",
616
+ "execution_count": 7,
617
+ "metadata": {
618
+ "colab": {
619
+ "base_uri": "https://localhost:8080/"
620
+ },
621
+ "id": "pv93ZCR68s4m",
622
+ "outputId": "9489b8a8-789d-4779-85f4-f4aa4e0b3392"
623
+ },
624
+ "outputs": [
625
+ {
626
+ "name": "stdout",
627
+ "output_type": "stream",
628
+ "text": [
629
+ "\\data\\\n",
630
+ "ngram 1=360208\n",
631
+ "ngram 2=5476741\n",
632
+ "ngram 3=18177681\n",
633
+ "ngram 4=30374983\n",
634
+ "ngram 5=37231651\n",
635
+ "\n",
636
+ "\\1-grams:\n",
637
+ "-6.770219\t<unk>\t0\n",
638
+ "0\t<s>\t-0.11831701\n",
639
+ "-4.6095004\tåterupptagande\t-1.2174699\n",
640
+ "-2.2361007\tav\t-0.79668784\n",
641
+ "-4.8163533\tsessionen\t-0.37327805\n",
642
+ "-2.2251768\tjag\t-1.4205662\n",
643
+ "-4.181505\tförklarar\t-0.56261665\n",
644
+ "-3.5790775\teuropaparlamentets\t-0.63611007\n",
645
+ "-4.771945\tsession\t-0.3647111\n",
646
+ "-5.8043895\tåterupptagen\t-0.3058712\n",
647
+ "-2.8580177\tefter\t-0.7557702\n",
648
+ "-5.199537\tavbrottet\t-0.43322718\n"
649
+ ]
650
+ }
651
+ ],
652
+ "source": [
653
+ "!head -20 5gram.arpa"
654
+ ]
655
+ },
656
+ {
657
+ "cell_type": "markdown",
658
+ "metadata": {
659
+ "id": "FEcPijF77mPY"
660
+ },
661
+ "source": [
662
+ "Add end-of-sentence token \"\\</s>\" "
663
+ ]
664
+ },
665
+ {
666
+ "cell_type": "code",
667
+ "execution_count": 8,
668
+ "metadata": {
669
+ "id": "Sktd-U5a7yZL"
670
+ },
671
+ "outputs": [],
672
+ "source": [
673
+ "with open(\"5gram.arpa\", \"r\") as read_file, open(\"5gram_sv_lm.arpa\", \"w\") as write_file:\n",
674
+ " has_added_eos = False\n",
675
+ " for line in read_file:\n",
676
+ " if not has_added_eos and \"ngram 1=\" in line:\n",
677
+ " count=line.strip().split(\"=\")[-1]\n",
678
+ " write_file.write(line.replace(f\"{count}\", f\"{int(count)+1}\"))\n",
679
+ " elif not has_added_eos and \"<s>\" in line:\n",
680
+ " write_file.write(line)\n",
681
+ " write_file.write(line.replace(\"<s>\", \"</s>\"))\n",
682
+ " has_added_eos = True\n",
683
+ " else:\n",
684
+ " write_file.write(line)"
685
+ ]
686
+ },
687
+ {
688
+ "cell_type": "markdown",
689
+ "metadata": {
690
+ "id": "hqXHYY-K760Q"
691
+ },
692
+ "source": [
693
+ "Check head of file"
694
+ ]
695
+ },
696
+ {
697
+ "cell_type": "code",
698
+ "execution_count": 9,
699
+ "metadata": {
700
+ "colab": {
701
+ "base_uri": "https://localhost:8080/"
702
+ },
703
+ "id": "0QuHk3AY8Hax",
704
+ "outputId": "090d065f-95c7-48e5-bc0c-01069f69c619"
705
+ },
706
+ "outputs": [
707
+ {
708
+ "name": "stdout",
709
+ "output_type": "stream",
710
+ "text": [
711
+ "\\data\\\n",
712
+ "ngram 1=360209\n",
713
+ "ngram 2=5476741\n",
714
+ "ngram 3=18177681\n",
715
+ "ngram 4=30374983\n",
716
+ "ngram 5=37231651\n",
717
+ "\n",
718
+ "\\1-grams:\n",
719
+ "-6.770219\t<unk>\t0\n",
720
+ "0\t<s>\t-0.11831701\n",
721
+ "0\t</s>\t-0.11831701\n",
722
+ "-4.6095004\tåterupptagande\t-1.2174699\n",
723
+ "-2.2361007\tav\t-0.79668784\n",
724
+ "-4.8163533\tsessionen\t-0.37327805\n",
725
+ "-2.2251768\tjag\t-1.4205662\n",
726
+ "-4.181505\tförklarar\t-0.56261665\n",
727
+ "-3.5790775\teuropaparlamentets\t-0.63611007\n",
728
+ "-4.771945\tsession\t-0.3647111\n",
729
+ "-5.8043895\tåterupptagen\t-0.3058712\n",
730
+ "-2.8580177\tefter\t-0.7557702\n"
731
+ ]
732
+ }
733
+ ],
734
+ "source": [
735
+ "!head -20 5gram_sv_lm.arpa"
736
+ ]
737
+ },
738
+ {
739
+ "cell_type": "markdown",
740
+ "metadata": {
741
+ "id": "kTvRntrZ9-uq"
742
+ },
743
+ "source": [
744
+ "Compress arpa file by converting it to bin"
745
+ ]
746
+ },
747
+ {
748
+ "cell_type": "code",
749
+ "execution_count": 11,
750
+ "metadata": {
751
+ "colab": {
752
+ "base_uri": "https://localhost:8080/"
753
+ },
754
+ "id": "DnmOlNZ5-ClT",
755
+ "outputId": "c380c05a-e335-4e9d-98b2-c015645a2d40"
756
+ },
757
+ "outputs": [
758
+ {
759
+ "name": "stdout",
760
+ "output_type": "stream",
761
+ "text": [
762
+ "Reading 5gram_sv_lm.arpa\n",
763
+ "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
764
+ "****************************************************************************************************\n",
765
+ "SUCCESS\n"
766
+ ]
767
+ }
768
+ ],
769
+ "source": [
770
+ "!kenlm/build/bin/build_binary 5gram_sv_lm.arpa 5gram_sv_lm.bin"
771
+ ]
772
+ },
773
+ {
774
+ "cell_type": "markdown",
775
+ "metadata": {
776
+ "id": "Xra-pM-M8MZj"
777
+ },
778
+ "source": [
779
+ "Download file to local machine (use Chrome if it fails on another browser)."
780
+ ]
781
+ },
782
+ {
783
+ "cell_type": "code",
784
+ "execution_count": 12,
785
+ "metadata": {
786
+ "colab": {
787
+ "base_uri": "https://localhost:8080/",
788
+ "height": 34
789
+ },
790
+ "id": "M7b5x8Hr8Yuo",
791
+ "outputId": "5fbedff6-4a41-47c5-903c-2ad3b59983e1"
792
+ },
793
+ "outputs": [
794
+ {
795
+ "data": {
796
+ "application/javascript": [
797
+ "\n",
798
+ " async function download(id, filename, size) {\n",
799
+ " if (!google.colab.kernel.accessAllowed) {\n",
800
+ " return;\n",
801
+ " }\n",
802
+ " const div = document.createElement('div');\n",
803
+ " const label = document.createElement('label');\n",
804
+ " label.textContent = `Downloading \"${filename}\": `;\n",
805
+ " div.appendChild(label);\n",
806
+ " const progress = document.createElement('progress');\n",
807
+ " progress.max = size;\n",
808
+ " div.appendChild(progress);\n",
809
+ " document.body.appendChild(div);\n",
810
+ "\n",
811
+ " const buffers = [];\n",
812
+ " let downloaded = 0;\n",
813
+ "\n",
814
+ " const channel = await google.colab.kernel.comms.open(id);\n",
815
+ " // Send a message to notify the kernel that we're ready.\n",
816
+ " channel.send({})\n",
817
+ "\n",
818
+ " for await (const message of channel.messages) {\n",
819
+ " // Send a message to notify the kernel that we're ready.\n",
820
+ " channel.send({})\n",
821
+ " if (message.buffers) {\n",
822
+ " for (const buffer of message.buffers) {\n",
823
+ " buffers.push(buffer);\n",
824
+ " downloaded += buffer.byteLength;\n",
825
+ " progress.value = downloaded;\n",
826
+ " }\n",
827
+ " }\n",
828
+ " }\n",
829
+ " const blob = new Blob(buffers, {type: 'application/binary'});\n",
830
+ " const a = document.createElement('a');\n",
831
+ " a.href = window.URL.createObjectURL(blob);\n",
832
+ " a.download = filename;\n",
833
+ " div.appendChild(a);\n",
834
+ " a.click();\n",
835
+ " div.remove();\n",
836
+ " }\n",
837
+ " "
838
+ ],
839
+ "text/plain": [
840
+ "<IPython.core.display.Javascript object>"
841
+ ]
842
+ },
843
+ "metadata": {},
844
+ "output_type": "display_data"
845
+ },
846
+ {
847
+ "data": {
848
+ "application/javascript": [
849
+ "download(\"download_82154b0d-c2b7-4fbd-8f04-e987f3406e7e\", \"5gram_sv_lm.bin\", 1981380707)"
850
+ ],
851
+ "text/plain": [
852
+ "<IPython.core.display.Javascript object>"
853
+ ]
854
+ },
855
+ "metadata": {},
856
+ "output_type": "display_data"
857
+ }
858
+ ],
859
+ "source": [
860
+ "from google.colab import files\n",
861
+ "files.download(\"5gram_sv_lm.bin\") "
862
+ ]
863
+ }
864
+ ],
865
+ "metadata": {
866
+ "colab": {
867
+ "name": "train_n-gram_lm_with_KenLM",
868
+ "provenance": []
869
+ },
870
+ "kernelspec": {
871
+ "display_name": "Python 3 (ipykernel)",
872
+ "language": "python",
873
+ "name": "python3"
874
+ },
875
+ "language_info": {
876
+ "codemirror_mode": {
877
+ "name": "ipython",
878
+ "version": 3
879
+ },
880
+ "file_extension": ".py",
881
+ "mimetype": "text/x-python",
882
+ "name": "python",
883
+ "nbconvert_exporter": "python",
884
+ "pygments_lexer": "ipython3",
885
+ "version": "3.8.6"
886
+ },
887
+ "widgets": {
888
+ "application/vnd.jupyter.widget-state+json": {
889
+ "033cb43d32314d279a7b9e1e86bbccdc": {
890
+ "model_module": "@jupyter-widgets/base",
891
+ "model_module_version": "1.2.0",
892
+ "model_name": "LayoutModel",
893
+ "state": {
894
+ "_model_module": "@jupyter-widgets/base",
895
+ "_model_module_version": "1.2.0",
896
+ "_model_name": "LayoutModel",
897
+ "_view_count": null,
898
+ "_view_module": "@jupyter-widgets/base",
899
+ "_view_module_version": "1.2.0",
900
+ "_view_name": "LayoutView",
901
+ "align_content": null,
902
+ "align_items": null,
903
+ "align_self": null,
904
+ "border": null,
905
+ "bottom": null,
906
+ "display": null,
907
+ "flex": null,
908
+ "flex_flow": null,
909
+ "grid_area": null,
910
+ "grid_auto_columns": null,
911
+ "grid_auto_flow": null,
912
+ "grid_auto_rows": null,
913
+ "grid_column": null,
914
+ "grid_gap": null,
915
+ "grid_row": null,
916
+ "grid_template_areas": null,
917
+ "grid_template_columns": null,
918
+ "grid_template_rows": null,
919
+ "height": null,
920
+ "justify_content": null,
921
+ "justify_items": null,
922
+ "left": null,
923
+ "margin": null,
924
+ "max_height": null,
925
+ "max_width": null,
926
+ "min_height": null,
927
+ "min_width": null,
928
+ "object_fit": null,
929
+ "object_position": null,
930
+ "order": null,
931
+ "overflow": null,
932
+ "overflow_x": null,
933
+ "overflow_y": null,
934
+ "padding": null,
935
+ "right": null,
936
+ "top": null,
937
+ "visibility": null,
938
+ "width": null
939
+ }
940
+ },
941
+ "0bee4735e017471fa8679ad984b88633": {
942
+ "model_module": "@jupyter-widgets/base",
943
+ "model_module_version": "1.2.0",
944
+ "model_name": "LayoutModel",
945
+ "state": {
946
+ "_model_module": "@jupyter-widgets/base",
947
+ "_model_module_version": "1.2.0",
948
+ "_model_name": "LayoutModel",
949
+ "_view_count": null,
950
+ "_view_module": "@jupyter-widgets/base",
951
+ "_view_module_version": "1.2.0",
952
+ "_view_name": "LayoutView",
953
+ "align_content": null,
954
+ "align_items": null,
955
+ "align_self": null,
956
+ "border": null,
957
+ "bottom": null,
958
+ "display": null,
959
+ "flex": null,
960
+ "flex_flow": null,
961
+ "grid_area": null,
962
+ "grid_auto_columns": null,
963
+ "grid_auto_flow": null,
964
+ "grid_auto_rows": null,
965
+ "grid_column": null,
966
+ "grid_gap": null,
967
+ "grid_row": null,
968
+ "grid_template_areas": null,
969
+ "grid_template_columns": null,
970
+ "grid_template_rows": null,
971
+ "height": null,
972
+ "justify_content": null,
973
+ "justify_items": null,
974
+ "left": null,
975
+ "margin": null,
976
+ "max_height": null,
977
+ "max_width": null,
978
+ "min_height": null,
979
+ "min_width": null,
980
+ "object_fit": null,
981
+ "object_position": null,
982
+ "order": null,
983
+ "overflow": null,
984
+ "overflow_x": null,
985
+ "overflow_y": null,
986
+ "padding": null,
987
+ "right": null,
988
+ "top": null,
989
+ "visibility": null,
990
+ "width": null
991
+ }
992
+ },
993
+ "1714ea91694842339756f26b2fa9c725": {
994
+ "model_module": "@jupyter-widgets/controls",
995
+ "model_module_version": "1.5.0",
996
+ "model_name": "FloatProgressModel",
997
+ "state": {
998
+ "_dom_classes": [],
999
+ "_model_module": "@jupyter-widgets/controls",
1000
+ "_model_module_version": "1.5.0",
1001
+ "_model_name": "FloatProgressModel",
1002
+ "_view_count": null,
1003
+ "_view_module": "@jupyter-widgets/controls",
1004
+ "_view_module_version": "1.5.0",
1005
+ "_view_name": "ProgressView",
1006
+ "bar_style": "success",
1007
+ "description": "",
1008
+ "description_tooltip": null,
1009
+ "layout": "IPY_MODEL_d3e6acd54d024d6791aab76232557721",
1010
+ "max": 1157,
1011
+ "min": 0,
1012
+ "orientation": "horizontal",
1013
+ "style": "IPY_MODEL_e3414cc0456241eca109f4e9e115d16a",
1014
+ "value": 1157
1015
+ }
1016
+ },
1017
+ "23c9da8dd7bf4be9a23357806ebfc036": {
1018
+ "model_module": "@jupyter-widgets/base",
1019
+ "model_module_version": "1.2.0",
1020
+ "model_name": "LayoutModel",
1021
+ "state": {
1022
+ "_model_module": "@jupyter-widgets/base",
1023
+ "_model_module_version": "1.2.0",
1024
+ "_model_name": "LayoutModel",
1025
+ "_view_count": null,
1026
+ "_view_module": "@jupyter-widgets/base",
1027
+ "_view_module_version": "1.2.0",
1028
+ "_view_name": "LayoutView",
1029
+ "align_content": null,
1030
+ "align_items": null,
1031
+ "align_self": null,
1032
+ "border": null,
1033
+ "bottom": null,
1034
+ "display": null,
1035
+ "flex": null,
1036
+ "flex_flow": null,
1037
+ "grid_area": null,
1038
+ "grid_auto_columns": null,
1039
+ "grid_auto_flow": null,
1040
+ "grid_auto_rows": null,
1041
+ "grid_column": null,
1042
+ "grid_gap": null,
1043
+ "grid_row": null,
1044
+ "grid_template_areas": null,
1045
+ "grid_template_columns": null,
1046
+ "grid_template_rows": null,
1047
+ "height": null,
1048
+ "justify_content": null,
1049
+ "justify_items": null,
1050
+ "left": null,
1051
+ "margin": null,
1052
+ "max_height": null,
1053
+ "max_width": null,
1054
+ "min_height": null,
1055
+ "min_width": null,
1056
+ "object_fit": null,
1057
+ "object_position": null,
1058
+ "order": null,
1059
+ "overflow": null,
1060
+ "overflow_x": null,
1061
+ "overflow_y": null,
1062
+ "padding": null,
1063
+ "right": null,
1064
+ "top": null,
1065
+ "visibility": null,
1066
+ "width": null
1067
+ }
1068
+ },
1069
+ "2c37aaee1f524837b477dc584209733a": {
1070
+ "model_module": "@jupyter-widgets/controls",
1071
+ "model_module_version": "1.5.0",
1072
+ "model_name": "DescriptionStyleModel",
1073
+ "state": {
1074
+ "_model_module": "@jupyter-widgets/controls",
1075
+ "_model_module_version": "1.5.0",
1076
+ "_model_name": "DescriptionStyleModel",
1077
+ "_view_count": null,
1078
+ "_view_module": "@jupyter-widgets/base",
1079
+ "_view_module_version": "1.2.0",
1080
+ "_view_name": "StyleView",
1081
+ "description_width": ""
1082
+ }
1083
+ },
1084
+ "31b2d7d8d9054c8fb47bf1b58043aee1": {
1085
+ "model_module": "@jupyter-widgets/controls",
1086
+ "model_module_version": "1.5.0",
1087
+ "model_name": "ProgressStyleModel",
1088
+ "state": {
1089
+ "_model_module": "@jupyter-widgets/controls",
1090
+ "_model_module_version": "1.5.0",
1091
+ "_model_name": "ProgressStyleModel",
1092
+ "_view_count": null,
1093
+ "_view_module": "@jupyter-widgets/base",
1094
+ "_view_module_version": "1.2.0",
1095
+ "_view_name": "StyleView",
1096
+ "bar_color": null,
1097
+ "description_width": ""
1098
+ }
1099
+ },
1100
+ "328cea1a2aac4fb58bceeaf126b99371": {
1101
+ "model_module": "@jupyter-widgets/controls",
1102
+ "model_module_version": "1.5.0",
1103
+ "model_name": "HTMLModel",
1104
+ "state": {
1105
+ "_dom_classes": [],
1106
+ "_model_module": "@jupyter-widgets/controls",
1107
+ "_model_module_version": "1.5.0",
1108
+ "_model_name": "HTMLModel",
1109
+ "_view_count": null,
1110
+ "_view_module": "@jupyter-widgets/controls",
1111
+ "_view_module_version": "1.5.0",
1112
+ "_view_name": "HTMLView",
1113
+ "description": "",
1114
+ "description_tooltip": null,
1115
+ "layout": "IPY_MODEL_c710ba94fd65486cbcbe1d402919e27f",
1116
+ "placeholder": "​",
1117
+ "style": "IPY_MODEL_7f92331b29fd49a68815b6d7389c1005",
1118
+ "value": "100%"
1119
+ }
1120
+ },
1121
+ "34c5f87238cb4f13a03b207aa7dc1d18": {
1122
+ "model_module": "@jupyter-widgets/base",
1123
+ "model_module_version": "1.2.0",
1124
+ "model_name": "LayoutModel",
1125
+ "state": {
1126
+ "_model_module": "@jupyter-widgets/base",
1127
+ "_model_module_version": "1.2.0",
1128
+ "_model_name": "LayoutModel",
1129
+ "_view_count": null,
1130
+ "_view_module": "@jupyter-widgets/base",
1131
+ "_view_module_version": "1.2.0",
1132
+ "_view_name": "LayoutView",
1133
+ "align_content": null,
1134
+ "align_items": null,
1135
+ "align_self": null,
1136
+ "border": null,
1137
+ "bottom": null,
1138
+ "display": null,
1139
+ "flex": null,
1140
+ "flex_flow": null,
1141
+ "grid_area": null,
1142
+ "grid_auto_columns": null,
1143
+ "grid_auto_flow": null,
1144
+ "grid_auto_rows": null,
1145
+ "grid_column": null,
1146
+ "grid_gap": null,
1147
+ "grid_row": null,
1148
+ "grid_template_areas": null,
1149
+ "grid_template_columns": null,
1150
+ "grid_template_rows": null,
1151
+ "height": null,
1152
+ "justify_content": null,
1153
+ "justify_items": null,
1154
+ "left": null,
1155
+ "margin": null,
1156
+ "max_height": null,
1157
+ "max_width": null,
1158
+ "min_height": null,
1159
+ "min_width": null,
1160
+ "object_fit": null,
1161
+ "object_position": null,
1162
+ "order": null,
1163
+ "overflow": null,
1164
+ "overflow_x": null,
1165
+ "overflow_y": null,
1166
+ "padding": null,
1167
+ "right": null,
1168
+ "top": null,
1169
+ "visibility": null,
1170
+ "width": null
1171
+ }
1172
+ },
1173
+ "34d9460b112c419885bbff5211674cb3": {
1174
+ "model_module": "@jupyter-widgets/controls",
1175
+ "model_module_version": "1.5.0",
1176
+ "model_name": "DescriptionStyleModel",
1177
+ "state": {
1178
+ "_model_module": "@jupyter-widgets/controls",
1179
+ "_model_module_version": "1.5.0",
1180
+ "_model_name": "DescriptionStyleModel",
1181
+ "_view_count": null,
1182
+ "_view_module": "@jupyter-widgets/base",
1183
+ "_view_module_version": "1.2.0",
1184
+ "_view_name": "StyleView",
1185
+ "description_width": ""
1186
+ }
1187
+ },
1188
+ "4958b4c72d0c48af9a77974fc4ed449c": {
1189
+ "model_module": "@jupyter-widgets/base",
1190
+ "model_module_version": "1.2.0",
1191
+ "model_name": "LayoutModel",
1192
+ "state": {
1193
+ "_model_module": "@jupyter-widgets/base",
1194
+ "_model_module_version": "1.2.0",
1195
+ "_model_name": "LayoutModel",
1196
+ "_view_count": null,
1197
+ "_view_module": "@jupyter-widgets/base",
1198
+ "_view_module_version": "1.2.0",
1199
+ "_view_name": "LayoutView",
1200
+ "align_content": null,
1201
+ "align_items": null,
1202
+ "align_self": null,
1203
+ "border": null,
1204
+ "bottom": null,
1205
+ "display": null,
1206
+ "flex": null,
1207
+ "flex_flow": null,
1208
+ "grid_area": null,
1209
+ "grid_auto_columns": null,
1210
+ "grid_auto_flow": null,
1211
+ "grid_auto_rows": null,
1212
+ "grid_column": null,
1213
+ "grid_gap": null,
1214
+ "grid_row": null,
1215
+ "grid_template_areas": null,
1216
+ "grid_template_columns": null,
1217
+ "grid_template_rows": null,
1218
+ "height": null,
1219
+ "justify_content": null,
1220
+ "justify_items": null,
1221
+ "left": null,
1222
+ "margin": null,
1223
+ "max_height": null,
1224
+ "max_width": null,
1225
+ "min_height": null,
1226
+ "min_width": null,
1227
+ "object_fit": null,
1228
+ "object_position": null,
1229
+ "order": null,
1230
+ "overflow": null,
1231
+ "overflow_x": null,
1232
+ "overflow_y": null,
1233
+ "padding": null,
1234
+ "right": null,
1235
+ "top": null,
1236
+ "visibility": null,
1237
+ "width": null
1238
+ }
1239
+ },
1240
+ "52a852c0f98c49aa9e5edfdd4f91e4ca": {
1241
+ "model_module": "@jupyter-widgets/controls",
1242
+ "model_module_version": "1.5.0",
1243
+ "model_name": "FloatProgressModel",
1244
+ "state": {
1245
+ "_dom_classes": [],
1246
+ "_model_module": "@jupyter-widgets/controls",
1247
+ "_model_module_version": "1.5.0",
1248
+ "_model_name": "FloatProgressModel",
1249
+ "_view_count": null,
1250
+ "_view_module": "@jupyter-widgets/controls",
1251
+ "_view_module_version": "1.5.0",
1252
+ "_view_name": "ProgressView",
1253
+ "bar_style": "success",
1254
+ "description": "",
1255
+ "description_tooltip": null,
1256
+ "layout": "IPY_MODEL_23c9da8dd7bf4be9a23357806ebfc036",
1257
+ "max": 158752204,
1258
+ "min": 0,
1259
+ "orientation": "horizontal",
1260
+ "style": "IPY_MODEL_31b2d7d8d9054c8fb47bf1b58043aee1",
1261
+ "value": 158752204
1262
+ }
1263
+ },
1264
+ "5925567ffea2436691c4ed3b7b147c17": {
1265
+ "model_module": "@jupyter-widgets/base",
1266
+ "model_module_version": "1.2.0",
1267
+ "model_name": "LayoutModel",
1268
+ "state": {
1269
+ "_model_module": "@jupyter-widgets/base",
1270
+ "_model_module_version": "1.2.0",
1271
+ "_model_name": "LayoutModel",
1272
+ "_view_count": null,
1273
+ "_view_module": "@jupyter-widgets/base",
1274
+ "_view_module_version": "1.2.0",
1275
+ "_view_name": "LayoutView",
1276
+ "align_content": null,
1277
+ "align_items": null,
1278
+ "align_self": null,
1279
+ "border": null,
1280
+ "bottom": null,
1281
+ "display": null,
1282
+ "flex": null,
1283
+ "flex_flow": null,
1284
+ "grid_area": null,
1285
+ "grid_auto_columns": null,
1286
+ "grid_auto_flow": null,
1287
+ "grid_auto_rows": null,
1288
+ "grid_column": null,
1289
+ "grid_gap": null,
1290
+ "grid_row": null,
1291
+ "grid_template_areas": null,
1292
+ "grid_template_columns": null,
1293
+ "grid_template_rows": null,
1294
+ "height": null,
1295
+ "justify_content": null,
1296
+ "justify_items": null,
1297
+ "left": null,
1298
+ "margin": null,
1299
+ "max_height": null,
1300
+ "max_width": null,
1301
+ "min_height": null,
1302
+ "min_width": null,
1303
+ "object_fit": null,
1304
+ "object_position": null,
1305
+ "order": null,
1306
+ "overflow": null,
1307
+ "overflow_x": null,
1308
+ "overflow_y": null,
1309
+ "padding": null,
1310
+ "right": null,
1311
+ "top": null,
1312
+ "visibility": null,
1313
+ "width": null
1314
+ }
1315
+ },
1316
+ "5951d1bafdd548b6b835b28cf9960533": {
1317
+ "model_module": "@jupyter-widgets/controls",
1318
+ "model_module_version": "1.5.0",
1319
+ "model_name": "ProgressStyleModel",
1320
+ "state": {
1321
+ "_model_module": "@jupyter-widgets/controls",
1322
+ "_model_module_version": "1.5.0",
1323
+ "_model_name": "ProgressStyleModel",
1324
+ "_view_count": null,
1325
+ "_view_module": "@jupyter-widgets/base",
1326
+ "_view_module_version": "1.2.0",
1327
+ "_view_name": "StyleView",
1328
+ "bar_color": null,
1329
+ "description_width": ""
1330
+ }
1331
+ },
1332
+ "5a9c9d4b60e54a3bb64c576707bd9736": {
1333
+ "model_module": "@jupyter-widgets/controls",
1334
+ "model_module_version": "1.5.0",
1335
+ "model_name": "DescriptionStyleModel",
1336
+ "state": {
1337
+ "_model_module": "@jupyter-widgets/controls",
1338
+ "_model_module_version": "1.5.0",
1339
+ "_model_name": "DescriptionStyleModel",
1340
+ "_view_count": null,
1341
+ "_view_module": "@jupyter-widgets/base",
1342
+ "_view_module_version": "1.2.0",
1343
+ "_view_name": "StyleView",
1344
+ "description_width": ""
1345
+ }
1346
+ },
1347
+ "5e469744bf6a4813983ae8ee727c1c5e": {
1348
+ "model_module": "@jupyter-widgets/controls",
1349
+ "model_module_version": "1.5.0",
1350
+ "model_name": "DescriptionStyleModel",
1351
+ "state": {
1352
+ "_model_module": "@jupyter-widgets/controls",
1353
+ "_model_module_version": "1.5.0",
1354
+ "_model_name": "DescriptionStyleModel",
1355
+ "_view_count": null,
1356
+ "_view_module": "@jupyter-widgets/base",
1357
+ "_view_module_version": "1.2.0",
1358
+ "_view_name": "StyleView",
1359
+ "description_width": ""
1360
+ }
1361
+ },
1362
+ "662d61fdd89d434785e74a7038427fbc": {
1363
+ "model_module": "@jupyter-widgets/controls",
1364
+ "model_module_version": "1.5.0",
1365
+ "model_name": "FloatProgressModel",
1366
+ "state": {
1367
+ "_dom_classes": [],
1368
+ "_model_module": "@jupyter-widgets/controls",
1369
+ "_model_module_version": "1.5.0",
1370
+ "_model_name": "FloatProgressModel",
1371
+ "_view_count": null,
1372
+ "_view_module": "@jupyter-widgets/controls",
1373
+ "_view_module_version": "1.5.0",
1374
+ "_view_name": "ProgressView",
1375
+ "bar_style": "success",
1376
+ "description": "",
1377
+ "description_tooltip": null,
1378
+ "layout": "IPY_MODEL_adcffda7f78c4a1c8bdc6010c8704292",
1379
+ "max": 1,
1380
+ "min": 0,
1381
+ "orientation": "horizontal",
1382
+ "style": "IPY_MODEL_5951d1bafdd548b6b835b28cf9960533",
1383
+ "value": 1
1384
+ }
1385
+ },
1386
+ "670d4f16a7e44144afc0ac70eea59325": {
1387
+ "model_module": "@jupyter-widgets/controls",
1388
+ "model_module_version": "1.5.0",
1389
+ "model_name": "HTMLModel",
1390
+ "state": {
1391
+ "_dom_classes": [],
1392
+ "_model_module": "@jupyter-widgets/controls",
1393
+ "_model_module_version": "1.5.0",
1394
+ "_model_name": "HTMLModel",
1395
+ "_view_count": null,
1396
+ "_view_module": "@jupyter-widgets/controls",
1397
+ "_view_module_version": "1.5.0",
1398
+ "_view_name": "HTMLView",
1399
+ "description": "",
1400
+ "description_tooltip": null,
1401
+ "layout": "IPY_MODEL_0bee4735e017471fa8679ad984b88633",
1402
+ "placeholder": "​",
1403
+ "style": "IPY_MODEL_2c37aaee1f524837b477dc584209733a",
1404
+ "value": " 1/1 [00:00&lt;00:00, 21.15it/s]"
1405
+ }
1406
+ },
1407
+ "6a7e3547dc4141e7b5937f2baff58cbf": {
1408
+ "model_module": "@jupyter-widgets/controls",
1409
+ "model_module_version": "1.5.0",
1410
+ "model_name": "HBoxModel",
1411
+ "state": {
1412
+ "_dom_classes": [],
1413
+ "_model_module": "@jupyter-widgets/controls",
1414
+ "_model_module_version": "1.5.0",
1415
+ "_model_name": "HBoxModel",
1416
+ "_view_count": null,
1417
+ "_view_module": "@jupyter-widgets/controls",
1418
+ "_view_module_version": "1.5.0",
1419
+ "_view_name": "HBoxView",
1420
+ "box_style": "",
1421
+ "children": [
1422
+ "IPY_MODEL_e33033ecda374ed4966ae5fccf6efe37",
1423
+ "IPY_MODEL_52a852c0f98c49aa9e5edfdd4f91e4ca",
1424
+ "IPY_MODEL_d1ff84cb5591449abcc7dd3e37f9a2df"
1425
+ ],
1426
+ "layout": "IPY_MODEL_921a3c1f50a24979838fd560c2cea9e0"
1427
+ }
1428
+ },
1429
+ "6b43ea2d93c04965a4539b3ef839893b": {
1430
+ "model_module": "@jupyter-widgets/controls",
1431
+ "model_module_version": "1.5.0",
1432
+ "model_name": "DescriptionStyleModel",
1433
+ "state": {
1434
+ "_model_module": "@jupyter-widgets/controls",
1435
+ "_model_module_version": "1.5.0",
1436
+ "_model_name": "DescriptionStyleModel",
1437
+ "_view_count": null,
1438
+ "_view_module": "@jupyter-widgets/base",
1439
+ "_view_module_version": "1.2.0",
1440
+ "_view_name": "StyleView",
1441
+ "description_width": ""
1442
+ }
1443
+ },
1444
+ "75130a60f93b49c8bee0986665121d02": {
1445
+ "model_module": "@jupyter-widgets/base",
1446
+ "model_module_version": "1.2.0",
1447
+ "model_name": "LayoutModel",
1448
+ "state": {
1449
+ "_model_module": "@jupyter-widgets/base",
1450
+ "_model_module_version": "1.2.0",
1451
+ "_model_name": "LayoutModel",
1452
+ "_view_count": null,
1453
+ "_view_module": "@jupyter-widgets/base",
1454
+ "_view_module_version": "1.2.0",
1455
+ "_view_name": "LayoutView",
1456
+ "align_content": null,
1457
+ "align_items": null,
1458
+ "align_self": null,
1459
+ "border": null,
1460
+ "bottom": null,
1461
+ "display": null,
1462
+ "flex": null,
1463
+ "flex_flow": null,
1464
+ "grid_area": null,
1465
+ "grid_auto_columns": null,
1466
+ "grid_auto_flow": null,
1467
+ "grid_auto_rows": null,
1468
+ "grid_column": null,
1469
+ "grid_gap": null,
1470
+ "grid_row": null,
1471
+ "grid_template_areas": null,
1472
+ "grid_template_columns": null,
1473
+ "grid_template_rows": null,
1474
+ "height": null,
1475
+ "justify_content": null,
1476
+ "justify_items": null,
1477
+ "left": null,
1478
+ "margin": null,
1479
+ "max_height": null,
1480
+ "max_width": null,
1481
+ "min_height": null,
1482
+ "min_width": null,
1483
+ "object_fit": null,
1484
+ "object_position": null,
1485
+ "order": null,
1486
+ "overflow": null,
1487
+ "overflow_x": null,
1488
+ "overflow_y": null,
1489
+ "padding": null,
1490
+ "right": null,
1491
+ "top": null,
1492
+ "visibility": null,
1493
+ "width": null
1494
+ }
1495
+ },
1496
+ "789d5845a82e48fe9c629af743b5b1f0": {
1497
+ "model_module": "@jupyter-widgets/base",
1498
+ "model_module_version": "1.2.0",
1499
+ "model_name": "LayoutModel",
1500
+ "state": {
1501
+ "_model_module": "@jupyter-widgets/base",
1502
+ "_model_module_version": "1.2.0",
1503
+ "_model_name": "LayoutModel",
1504
+ "_view_count": null,
1505
+ "_view_module": "@jupyter-widgets/base",
1506
+ "_view_module_version": "1.2.0",
1507
+ "_view_name": "LayoutView",
1508
+ "align_content": null,
1509
+ "align_items": null,
1510
+ "align_self": null,
1511
+ "border": null,
1512
+ "bottom": null,
1513
+ "display": null,
1514
+ "flex": null,
1515
+ "flex_flow": null,
1516
+ "grid_area": null,
1517
+ "grid_auto_columns": null,
1518
+ "grid_auto_flow": null,
1519
+ "grid_auto_rows": null,
1520
+ "grid_column": null,
1521
+ "grid_gap": null,
1522
+ "grid_row": null,
1523
+ "grid_template_areas": null,
1524
+ "grid_template_columns": null,
1525
+ "grid_template_rows": null,
1526
+ "height": null,
1527
+ "justify_content": null,
1528
+ "justify_items": null,
1529
+ "left": null,
1530
+ "margin": null,
1531
+ "max_height": null,
1532
+ "max_width": null,
1533
+ "min_height": null,
1534
+ "min_width": null,
1535
+ "object_fit": null,
1536
+ "object_position": null,
1537
+ "order": null,
1538
+ "overflow": null,
1539
+ "overflow_x": null,
1540
+ "overflow_y": null,
1541
+ "padding": null,
1542
+ "right": null,
1543
+ "top": null,
1544
+ "visibility": null,
1545
+ "width": null
1546
+ }
1547
+ },
1548
+ "799acae3451445f0a3616b8932f2e3f3": {
1549
+ "model_module": "@jupyter-widgets/controls",
1550
+ "model_module_version": "1.5.0",
1551
+ "model_name": "HTMLModel",
1552
+ "state": {
1553
+ "_dom_classes": [],
1554
+ "_model_module": "@jupyter-widgets/controls",
1555
+ "_model_module_version": "1.5.0",
1556
+ "_model_name": "HTMLModel",
1557
+ "_view_count": null,
1558
+ "_view_module": "@jupyter-widgets/controls",
1559
+ "_view_module_version": "1.5.0",
1560
+ "_view_name": "HTMLView",
1561
+ "description": "",
1562
+ "description_tooltip": null,
1563
+ "layout": "IPY_MODEL_789d5845a82e48fe9c629af743b5b1f0",
1564
+ "placeholder": "​",
1565
+ "style": "IPY_MODEL_5a9c9d4b60e54a3bb64c576707bd9736",
1566
+ "value": "Downloading: 100%"
1567
+ }
1568
+ },
1569
+ "7f92331b29fd49a68815b6d7389c1005": {
1570
+ "model_module": "@jupyter-widgets/controls",
1571
+ "model_module_version": "1.5.0",
1572
+ "model_name": "DescriptionStyleModel",
1573
+ "state": {
1574
+ "_model_module": "@jupyter-widgets/controls",
1575
+ "_model_module_version": "1.5.0",
1576
+ "_model_name": "DescriptionStyleModel",
1577
+ "_view_count": null,
1578
+ "_view_module": "@jupyter-widgets/base",
1579
+ "_view_module_version": "1.2.0",
1580
+ "_view_name": "StyleView",
1581
+ "description_width": ""
1582
+ }
1583
+ },
1584
+ "82692c41501c487fad27c6b19836f46f": {
1585
+ "model_module": "@jupyter-widgets/controls",
1586
+ "model_module_version": "1.5.0",
1587
+ "model_name": "FloatProgressModel",
1588
+ "state": {
1589
+ "_dom_classes": [],
1590
+ "_model_module": "@jupyter-widgets/controls",
1591
+ "_model_module_version": "1.5.0",
1592
+ "_model_name": "FloatProgressModel",
1593
+ "_view_count": null,
1594
+ "_view_module": "@jupyter-widgets/controls",
1595
+ "_view_module_version": "1.5.0",
1596
+ "_view_name": "ProgressView",
1597
+ "bar_style": "success",
1598
+ "description": "",
1599
+ "description_tooltip": null,
1600
+ "layout": "IPY_MODEL_db7ee45589e04749b80376e25ee377bb",
1601
+ "max": 1,
1602
+ "min": 0,
1603
+ "orientation": "horizontal",
1604
+ "style": "IPY_MODEL_c7955974289a4f448b422d7e4640131a",
1605
+ "value": 1
1606
+ }
1607
+ },
1608
+ "921a3c1f50a24979838fd560c2cea9e0": {
1609
+ "model_module": "@jupyter-widgets/base",
1610
+ "model_module_version": "1.2.0",
1611
+ "model_name": "LayoutModel",
1612
+ "state": {
1613
+ "_model_module": "@jupyter-widgets/base",
1614
+ "_model_module_version": "1.2.0",
1615
+ "_model_name": "LayoutModel",
1616
+ "_view_count": null,
1617
+ "_view_module": "@jupyter-widgets/base",
1618
+ "_view_module_version": "1.2.0",
1619
+ "_view_name": "LayoutView",
1620
+ "align_content": null,
1621
+ "align_items": null,
1622
+ "align_self": null,
1623
+ "border": null,
1624
+ "bottom": null,
1625
+ "display": null,
1626
+ "flex": null,
1627
+ "flex_flow": null,
1628
+ "grid_area": null,
1629
+ "grid_auto_columns": null,
1630
+ "grid_auto_flow": null,
1631
+ "grid_auto_rows": null,
1632
+ "grid_column": null,
1633
+ "grid_gap": null,
1634
+ "grid_row": null,
1635
+ "grid_template_areas": null,
1636
+ "grid_template_columns": null,
1637
+ "grid_template_rows": null,
1638
+ "height": null,
1639
+ "justify_content": null,
1640
+ "justify_items": null,
1641
+ "left": null,
1642
+ "margin": null,
1643
+ "max_height": null,
1644
+ "max_width": null,
1645
+ "min_height": null,
1646
+ "min_width": null,
1647
+ "object_fit": null,
1648
+ "object_position": null,
1649
+ "order": null,
1650
+ "overflow": null,
1651
+ "overflow_x": null,
1652
+ "overflow_y": null,
1653
+ "padding": null,
1654
+ "right": null,
1655
+ "top": null,
1656
+ "visibility": null,
1657
+ "width": null
1658
+ }
1659
+ },
1660
+ "a1eca879a11f414f8173b0c2c260f4c3": {
1661
+ "model_module": "@jupyter-widgets/controls",
1662
+ "model_module_version": "1.5.0",
1663
+ "model_name": "HBoxModel",
1664
+ "state": {
1665
+ "_dom_classes": [],
1666
+ "_model_module": "@jupyter-widgets/controls",
1667
+ "_model_module_version": "1.5.0",
1668
+ "_model_name": "HBoxModel",
1669
+ "_view_count": null,
1670
+ "_view_module": "@jupyter-widgets/controls",
1671
+ "_view_module_version": "1.5.0",
1672
+ "_view_name": "HBoxView",
1673
+ "box_style": "",
1674
+ "children": [
1675
+ "IPY_MODEL_328cea1a2aac4fb58bceeaf126b99371",
1676
+ "IPY_MODEL_662d61fdd89d434785e74a7038427fbc",
1677
+ "IPY_MODEL_670d4f16a7e44144afc0ac70eea59325"
1678
+ ],
1679
+ "layout": "IPY_MODEL_75130a60f93b49c8bee0986665121d02"
1680
+ }
1681
+ },
1682
+ "a41cf7f5121a4068842bb5c7d2bc4d62": {
1683
+ "model_module": "@jupyter-widgets/base",
1684
+ "model_module_version": "1.2.0",
1685
+ "model_name": "LayoutModel",
1686
+ "state": {
1687
+ "_model_module": "@jupyter-widgets/base",
1688
+ "_model_module_version": "1.2.0",
1689
+ "_model_name": "LayoutModel",
1690
+ "_view_count": null,
1691
+ "_view_module": "@jupyter-widgets/base",
1692
+ "_view_module_version": "1.2.0",
1693
+ "_view_name": "LayoutView",
1694
+ "align_content": null,
1695
+ "align_items": null,
1696
+ "align_self": null,
1697
+ "border": null,
1698
+ "bottom": null,
1699
+ "display": null,
1700
+ "flex": null,
1701
+ "flex_flow": null,
1702
+ "grid_area": null,
1703
+ "grid_auto_columns": null,
1704
+ "grid_auto_flow": null,
1705
+ "grid_auto_rows": null,
1706
+ "grid_column": null,
1707
+ "grid_gap": null,
1708
+ "grid_row": null,
1709
+ "grid_template_areas": null,
1710
+ "grid_template_columns": null,
1711
+ "grid_template_rows": null,
1712
+ "height": null,
1713
+ "justify_content": null,
1714
+ "justify_items": null,
1715
+ "left": null,
1716
+ "margin": null,
1717
+ "max_height": null,
1718
+ "max_width": null,
1719
+ "min_height": null,
1720
+ "min_width": null,
1721
+ "object_fit": null,
1722
+ "object_position": null,
1723
+ "order": null,
1724
+ "overflow": null,
1725
+ "overflow_x": null,
1726
+ "overflow_y": null,
1727
+ "padding": null,
1728
+ "right": null,
1729
+ "top": null,
1730
+ "visibility": null,
1731
+ "width": null
1732
+ }
1733
+ },
1734
+ "a4b5b93b88f549e8a4f37f3d48834ca9": {
1735
+ "model_module": "@jupyter-widgets/controls",
1736
+ "model_module_version": "1.5.0",
1737
+ "model_name": "HTMLModel",
1738
+ "state": {
1739
+ "_dom_classes": [],
1740
+ "_model_module": "@jupyter-widgets/controls",
1741
+ "_model_module_version": "1.5.0",
1742
+ "_model_name": "HTMLModel",
1743
+ "_view_count": null,
1744
+ "_view_module": "@jupyter-widgets/controls",
1745
+ "_view_module_version": "1.5.0",
1746
+ "_view_name": "HTMLView",
1747
+ "description": "",
1748
+ "description_tooltip": null,
1749
+ "layout": "IPY_MODEL_34c5f87238cb4f13a03b207aa7dc1d18",
1750
+ "placeholder": "​",
1751
+ "style": "IPY_MODEL_5e469744bf6a4813983ae8ee727c1c5e",
1752
+ "value": "100%"
1753
+ }
1754
+ },
1755
+ "a6e3c5ce0a3c49ffb3d7cbf92568fe47": {
1756
+ "model_module": "@jupyter-widgets/base",
1757
+ "model_module_version": "1.2.0",
1758
+ "model_name": "LayoutModel",
1759
+ "state": {
1760
+ "_model_module": "@jupyter-widgets/base",
1761
+ "_model_module_version": "1.2.0",
1762
+ "_model_name": "LayoutModel",
1763
+ "_view_count": null,
1764
+ "_view_module": "@jupyter-widgets/base",
1765
+ "_view_module_version": "1.2.0",
1766
+ "_view_name": "LayoutView",
1767
+ "align_content": null,
1768
+ "align_items": null,
1769
+ "align_self": null,
1770
+ "border": null,
1771
+ "bottom": null,
1772
+ "display": null,
1773
+ "flex": null,
1774
+ "flex_flow": null,
1775
+ "grid_area": null,
1776
+ "grid_auto_columns": null,
1777
+ "grid_auto_flow": null,
1778
+ "grid_auto_rows": null,
1779
+ "grid_column": null,
1780
+ "grid_gap": null,
1781
+ "grid_row": null,
1782
+ "grid_template_areas": null,
1783
+ "grid_template_columns": null,
1784
+ "grid_template_rows": null,
1785
+ "height": null,
1786
+ "justify_content": null,
1787
+ "justify_items": null,
1788
+ "left": null,
1789
+ "margin": null,
1790
+ "max_height": null,
1791
+ "max_width": null,
1792
+ "min_height": null,
1793
+ "min_width": null,
1794
+ "object_fit": null,
1795
+ "object_position": null,
1796
+ "order": null,
1797
+ "overflow": null,
1798
+ "overflow_x": null,
1799
+ "overflow_y": null,
1800
+ "padding": null,
1801
+ "right": null,
1802
+ "top": null,
1803
+ "visibility": null,
1804
+ "width": null
1805
+ }
1806
+ },
1807
+ "ad5d7b0bc9ad4e228b3bc76bc975cc47": {
1808
+ "model_module": "@jupyter-widgets/controls",
1809
+ "model_module_version": "1.5.0",
1810
+ "model_name": "HBoxModel",
1811
+ "state": {
1812
+ "_dom_classes": [],
1813
+ "_model_module": "@jupyter-widgets/controls",
1814
+ "_model_module_version": "1.5.0",
1815
+ "_model_name": "HBoxModel",
1816
+ "_view_count": null,
1817
+ "_view_module": "@jupyter-widgets/controls",
1818
+ "_view_module_version": "1.5.0",
1819
+ "_view_name": "HBoxView",
1820
+ "box_style": "",
1821
+ "children": [
1822
+ "IPY_MODEL_799acae3451445f0a3616b8932f2e3f3",
1823
+ "IPY_MODEL_1714ea91694842339756f26b2fa9c725",
1824
+ "IPY_MODEL_b5d6b069468246abbb3207f3df6f9dde"
1825
+ ],
1826
+ "layout": "IPY_MODEL_5925567ffea2436691c4ed3b7b147c17"
1827
+ }
1828
+ },
1829
+ "adcffda7f78c4a1c8bdc6010c8704292": {
1830
+ "model_module": "@jupyter-widgets/base",
1831
+ "model_module_version": "1.2.0",
1832
+ "model_name": "LayoutModel",
1833
+ "state": {
1834
+ "_model_module": "@jupyter-widgets/base",
1835
+ "_model_module_version": "1.2.0",
1836
+ "_model_name": "LayoutModel",
1837
+ "_view_count": null,
1838
+ "_view_module": "@jupyter-widgets/base",
1839
+ "_view_module_version": "1.2.0",
1840
+ "_view_name": "LayoutView",
1841
+ "align_content": null,
1842
+ "align_items": null,
1843
+ "align_self": null,
1844
+ "border": null,
1845
+ "bottom": null,
1846
+ "display": null,
1847
+ "flex": null,
1848
+ "flex_flow": null,
1849
+ "grid_area": null,
1850
+ "grid_auto_columns": null,
1851
+ "grid_auto_flow": null,
1852
+ "grid_auto_rows": null,
1853
+ "grid_column": null,
1854
+ "grid_gap": null,
1855
+ "grid_row": null,
1856
+ "grid_template_areas": null,
1857
+ "grid_template_columns": null,
1858
+ "grid_template_rows": null,
1859
+ "height": null,
1860
+ "justify_content": null,
1861
+ "justify_items": null,
1862
+ "left": null,
1863
+ "margin": null,
1864
+ "max_height": null,
1865
+ "max_width": null,
1866
+ "min_height": null,
1867
+ "min_width": null,
1868
+ "object_fit": null,
1869
+ "object_position": null,
1870
+ "order": null,
1871
+ "overflow": null,
1872
+ "overflow_x": null,
1873
+ "overflow_y": null,
1874
+ "padding": null,
1875
+ "right": null,
1876
+ "top": null,
1877
+ "visibility": null,
1878
+ "width": null
1879
+ }
1880
+ },
1881
+ "af8f433ef2f540c9bd70d14421904d83": {
1882
+ "model_module": "@jupyter-widgets/controls",
1883
+ "model_module_version": "1.5.0",
1884
+ "model_name": "HTMLModel",
1885
+ "state": {
1886
+ "_dom_classes": [],
1887
+ "_model_module": "@jupyter-widgets/controls",
1888
+ "_model_module_version": "1.5.0",
1889
+ "_model_name": "HTMLModel",
1890
+ "_view_count": null,
1891
+ "_view_module": "@jupyter-widgets/controls",
1892
+ "_view_module_version": "1.5.0",
1893
+ "_view_name": "HTMLView",
1894
+ "description": "",
1895
+ "description_tooltip": null,
1896
+ "layout": "IPY_MODEL_033cb43d32314d279a7b9e1e86bbccdc",
1897
+ "placeholder": "​",
1898
+ "style": "IPY_MODEL_34d9460b112c419885bbff5211674cb3",
1899
+ "value": " 1/1 [00:05&lt;00:00, 5.67s/it]"
1900
+ }
1901
+ },
1902
+ "b5d6b069468246abbb3207f3df6f9dde": {
1903
+ "model_module": "@jupyter-widgets/controls",
1904
+ "model_module_version": "1.5.0",
1905
+ "model_name": "HTMLModel",
1906
+ "state": {
1907
+ "_dom_classes": [],
1908
+ "_model_module": "@jupyter-widgets/controls",
1909
+ "_model_module_version": "1.5.0",
1910
+ "_model_name": "HTMLModel",
1911
+ "_view_count": null,
1912
+ "_view_module": "@jupyter-widgets/controls",
1913
+ "_view_module_version": "1.5.0",
1914
+ "_view_name": "HTMLView",
1915
+ "description": "",
1916
+ "description_tooltip": null,
1917
+ "layout": "IPY_MODEL_4958b4c72d0c48af9a77974fc4ed449c",
1918
+ "placeholder": "​",
1919
+ "style": "IPY_MODEL_6b43ea2d93c04965a4539b3ef839893b",
1920
+ "value": " 1.16k/1.16k [00:00&lt;00:00, 24.4kB/s]"
1921
+ }
1922
+ },
1923
+ "c710ba94fd65486cbcbe1d402919e27f": {
1924
+ "model_module": "@jupyter-widgets/base",
1925
+ "model_module_version": "1.2.0",
1926
+ "model_name": "LayoutModel",
1927
+ "state": {
1928
+ "_model_module": "@jupyter-widgets/base",
1929
+ "_model_module_version": "1.2.0",
1930
+ "_model_name": "LayoutModel",
1931
+ "_view_count": null,
1932
+ "_view_module": "@jupyter-widgets/base",
1933
+ "_view_module_version": "1.2.0",
1934
+ "_view_name": "LayoutView",
1935
+ "align_content": null,
1936
+ "align_items": null,
1937
+ "align_self": null,
1938
+ "border": null,
1939
+ "bottom": null,
1940
+ "display": null,
1941
+ "flex": null,
1942
+ "flex_flow": null,
1943
+ "grid_area": null,
1944
+ "grid_auto_columns": null,
1945
+ "grid_auto_flow": null,
1946
+ "grid_auto_rows": null,
1947
+ "grid_column": null,
1948
+ "grid_gap": null,
1949
+ "grid_row": null,
1950
+ "grid_template_areas": null,
1951
+ "grid_template_columns": null,
1952
+ "grid_template_rows": null,
1953
+ "height": null,
1954
+ "justify_content": null,
1955
+ "justify_items": null,
1956
+ "left": null,
1957
+ "margin": null,
1958
+ "max_height": null,
1959
+ "max_width": null,
1960
+ "min_height": null,
1961
+ "min_width": null,
1962
+ "object_fit": null,
1963
+ "object_position": null,
1964
+ "order": null,
1965
+ "overflow": null,
1966
+ "overflow_x": null,
1967
+ "overflow_y": null,
1968
+ "padding": null,
1969
+ "right": null,
1970
+ "top": null,
1971
+ "visibility": null,
1972
+ "width": null
1973
+ }
1974
+ },
1975
+ "c7955974289a4f448b422d7e4640131a": {
1976
+ "model_module": "@jupyter-widgets/controls",
1977
+ "model_module_version": "1.5.0",
1978
+ "model_name": "ProgressStyleModel",
1979
+ "state": {
1980
+ "_model_module": "@jupyter-widgets/controls",
1981
+ "_model_module_version": "1.5.0",
1982
+ "_model_name": "ProgressStyleModel",
1983
+ "_view_count": null,
1984
+ "_view_module": "@jupyter-widgets/base",
1985
+ "_view_module_version": "1.2.0",
1986
+ "_view_name": "StyleView",
1987
+ "bar_color": null,
1988
+ "description_width": ""
1989
+ }
1990
+ },
1991
+ "d1ff84cb5591449abcc7dd3e37f9a2df": {
1992
+ "model_module": "@jupyter-widgets/controls",
1993
+ "model_module_version": "1.5.0",
1994
+ "model_name": "HTMLModel",
1995
+ "state": {
1996
+ "_dom_classes": [],
1997
+ "_model_module": "@jupyter-widgets/controls",
1998
+ "_model_module_version": "1.5.0",
1999
+ "_model_name": "HTMLModel",
2000
+ "_view_count": null,
2001
+ "_view_module": "@jupyter-widgets/controls",
2002
+ "_view_module_version": "1.5.0",
2003
+ "_view_name": "HTMLView",
2004
+ "description": "",
2005
+ "description_tooltip": null,
2006
+ "layout": "IPY_MODEL_a6e3c5ce0a3c49ffb3d7cbf92568fe47",
2007
+ "placeholder": "​",
2008
+ "style": "IPY_MODEL_e084d47529ca4131b233ea3514a6344f",
2009
+ "value": " 159M/159M [00:04&lt;00:00, 26.9MB/s]"
2010
+ }
2011
+ },
2012
+ "d3e6acd54d024d6791aab76232557721": {
2013
+ "model_module": "@jupyter-widgets/base",
2014
+ "model_module_version": "1.2.0",
2015
+ "model_name": "LayoutModel",
2016
+ "state": {
2017
+ "_model_module": "@jupyter-widgets/base",
2018
+ "_model_module_version": "1.2.0",
2019
+ "_model_name": "LayoutModel",
2020
+ "_view_count": null,
2021
+ "_view_module": "@jupyter-widgets/base",
2022
+ "_view_module_version": "1.2.0",
2023
+ "_view_name": "LayoutView",
2024
+ "align_content": null,
2025
+ "align_items": null,
2026
+ "align_self": null,
2027
+ "border": null,
2028
+ "bottom": null,
2029
+ "display": null,
2030
+ "flex": null,
2031
+ "flex_flow": null,
2032
+ "grid_area": null,
2033
+ "grid_auto_columns": null,
2034
+ "grid_auto_flow": null,
2035
+ "grid_auto_rows": null,
2036
+ "grid_column": null,
2037
+ "grid_gap": null,
2038
+ "grid_row": null,
2039
+ "grid_template_areas": null,
2040
+ "grid_template_columns": null,
2041
+ "grid_template_rows": null,
2042
+ "height": null,
2043
+ "justify_content": null,
2044
+ "justify_items": null,
2045
+ "left": null,
2046
+ "margin": null,
2047
+ "max_height": null,
2048
+ "max_width": null,
2049
+ "min_height": null,
2050
+ "min_width": null,
2051
+ "object_fit": null,
2052
+ "object_position": null,
2053
+ "order": null,
2054
+ "overflow": null,
2055
+ "overflow_x": null,
2056
+ "overflow_y": null,
2057
+ "padding": null,
2058
+ "right": null,
2059
+ "top": null,
2060
+ "visibility": null,
2061
+ "width": null
2062
+ }
2063
+ },
2064
+ "d722bbfffeaf4ea7a1060d10dc3a06db": {
2065
+ "model_module": "@jupyter-widgets/controls",
2066
+ "model_module_version": "1.5.0",
2067
+ "model_name": "HBoxModel",
2068
+ "state": {
2069
+ "_dom_classes": [],
2070
+ "_model_module": "@jupyter-widgets/controls",
2071
+ "_model_module_version": "1.5.0",
2072
+ "_model_name": "HBoxModel",
2073
+ "_view_count": null,
2074
+ "_view_module": "@jupyter-widgets/controls",
2075
+ "_view_module_version": "1.5.0",
2076
+ "_view_name": "HBoxView",
2077
+ "box_style": "",
2078
+ "children": [
2079
+ "IPY_MODEL_a4b5b93b88f549e8a4f37f3d48834ca9",
2080
+ "IPY_MODEL_82692c41501c487fad27c6b19836f46f",
2081
+ "IPY_MODEL_af8f433ef2f540c9bd70d14421904d83"
2082
+ ],
2083
+ "layout": "IPY_MODEL_e81b0bf92adc4aadaafce4ee7d36421e"
2084
+ }
2085
+ },
2086
+ "db7ee45589e04749b80376e25ee377bb": {
2087
+ "model_module": "@jupyter-widgets/base",
2088
+ "model_module_version": "1.2.0",
2089
+ "model_name": "LayoutModel",
2090
+ "state": {
2091
+ "_model_module": "@jupyter-widgets/base",
2092
+ "_model_module_version": "1.2.0",
2093
+ "_model_name": "LayoutModel",
2094
+ "_view_count": null,
2095
+ "_view_module": "@jupyter-widgets/base",
2096
+ "_view_module_version": "1.2.0",
2097
+ "_view_name": "LayoutView",
2098
+ "align_content": null,
2099
+ "align_items": null,
2100
+ "align_self": null,
2101
+ "border": null,
2102
+ "bottom": null,
2103
+ "display": null,
2104
+ "flex": null,
2105
+ "flex_flow": null,
2106
+ "grid_area": null,
2107
+ "grid_auto_columns": null,
2108
+ "grid_auto_flow": null,
2109
+ "grid_auto_rows": null,
2110
+ "grid_column": null,
2111
+ "grid_gap": null,
2112
+ "grid_row": null,
2113
+ "grid_template_areas": null,
2114
+ "grid_template_columns": null,
2115
+ "grid_template_rows": null,
2116
+ "height": null,
2117
+ "justify_content": null,
2118
+ "justify_items": null,
2119
+ "left": null,
2120
+ "margin": null,
2121
+ "max_height": null,
2122
+ "max_width": null,
2123
+ "min_height": null,
2124
+ "min_width": null,
2125
+ "object_fit": null,
2126
+ "object_position": null,
2127
+ "order": null,
2128
+ "overflow": null,
2129
+ "overflow_x": null,
2130
+ "overflow_y": null,
2131
+ "padding": null,
2132
+ "right": null,
2133
+ "top": null,
2134
+ "visibility": null,
2135
+ "width": null
2136
+ }
2137
+ },
2138
+ "e084d47529ca4131b233ea3514a6344f": {
2139
+ "model_module": "@jupyter-widgets/controls",
2140
+ "model_module_version": "1.5.0",
2141
+ "model_name": "DescriptionStyleModel",
2142
+ "state": {
2143
+ "_model_module": "@jupyter-widgets/controls",
2144
+ "_model_module_version": "1.5.0",
2145
+ "_model_name": "DescriptionStyleModel",
2146
+ "_view_count": null,
2147
+ "_view_module": "@jupyter-widgets/base",
2148
+ "_view_module_version": "1.2.0",
2149
+ "_view_name": "StyleView",
2150
+ "description_width": ""
2151
+ }
2152
+ },
2153
+ "e33033ecda374ed4966ae5fccf6efe37": {
2154
+ "model_module": "@jupyter-widgets/controls",
2155
+ "model_module_version": "1.5.0",
2156
+ "model_name": "HTMLModel",
2157
+ "state": {
2158
+ "_dom_classes": [],
2159
+ "_model_module": "@jupyter-widgets/controls",
2160
+ "_model_module_version": "1.5.0",
2161
+ "_model_name": "HTMLModel",
2162
+ "_view_count": null,
2163
+ "_view_module": "@jupyter-widgets/controls",
2164
+ "_view_module_version": "1.5.0",
2165
+ "_view_name": "HTMLView",
2166
+ "description": "",
2167
+ "description_tooltip": null,
2168
+ "layout": "IPY_MODEL_a41cf7f5121a4068842bb5c7d2bc4d62",
2169
+ "placeholder": "​",
2170
+ "style": "IPY_MODEL_f479a9629c414cb495a97b0741b0fe4b",
2171
+ "value": "Downloading: 100%"
2172
+ }
2173
+ },
2174
+ "e3414cc0456241eca109f4e9e115d16a": {
2175
+ "model_module": "@jupyter-widgets/controls",
2176
+ "model_module_version": "1.5.0",
2177
+ "model_name": "ProgressStyleModel",
2178
+ "state": {
2179
+ "_model_module": "@jupyter-widgets/controls",
2180
+ "_model_module_version": "1.5.0",
2181
+ "_model_name": "ProgressStyleModel",
2182
+ "_view_count": null,
2183
+ "_view_module": "@jupyter-widgets/base",
2184
+ "_view_module_version": "1.2.0",
2185
+ "_view_name": "StyleView",
2186
+ "bar_color": null,
2187
+ "description_width": ""
2188
+ }
2189
+ },
2190
+ "e81b0bf92adc4aadaafce4ee7d36421e": {
2191
+ "model_module": "@jupyter-widgets/base",
2192
+ "model_module_version": "1.2.0",
2193
+ "model_name": "LayoutModel",
2194
+ "state": {
2195
+ "_model_module": "@jupyter-widgets/base",
2196
+ "_model_module_version": "1.2.0",
2197
+ "_model_name": "LayoutModel",
2198
+ "_view_count": null,
2199
+ "_view_module": "@jupyter-widgets/base",
2200
+ "_view_module_version": "1.2.0",
2201
+ "_view_name": "LayoutView",
2202
+ "align_content": null,
2203
+ "align_items": null,
2204
+ "align_self": null,
2205
+ "border": null,
2206
+ "bottom": null,
2207
+ "display": null,
2208
+ "flex": null,
2209
+ "flex_flow": null,
2210
+ "grid_area": null,
2211
+ "grid_auto_columns": null,
2212
+ "grid_auto_flow": null,
2213
+ "grid_auto_rows": null,
2214
+ "grid_column": null,
2215
+ "grid_gap": null,
2216
+ "grid_row": null,
2217
+ "grid_template_areas": null,
2218
+ "grid_template_columns": null,
2219
+ "grid_template_rows": null,
2220
+ "height": null,
2221
+ "justify_content": null,
2222
+ "justify_items": null,
2223
+ "left": null,
2224
+ "margin": null,
2225
+ "max_height": null,
2226
+ "max_width": null,
2227
+ "min_height": null,
2228
+ "min_width": null,
2229
+ "object_fit": null,
2230
+ "object_position": null,
2231
+ "order": null,
2232
+ "overflow": null,
2233
+ "overflow_x": null,
2234
+ "overflow_y": null,
2235
+ "padding": null,
2236
+ "right": null,
2237
+ "top": null,
2238
+ "visibility": null,
2239
+ "width": null
2240
+ }
2241
+ },
2242
+ "f479a9629c414cb495a97b0741b0fe4b": {
2243
+ "model_module": "@jupyter-widgets/controls",
2244
+ "model_module_version": "1.5.0",
2245
+ "model_name": "DescriptionStyleModel",
2246
+ "state": {
2247
+ "_model_module": "@jupyter-widgets/controls",
2248
+ "_model_module_version": "1.5.0",
2249
+ "_model_name": "DescriptionStyleModel",
2250
+ "_view_count": null,
2251
+ "_view_module": "@jupyter-widgets/base",
2252
+ "_view_module_version": "1.2.0",
2253
+ "_view_name": "StyleView",
2254
+ "description_width": ""
2255
+ }
2256
+ }
2257
+ }
2258
+ }
2259
+ },
2260
+ "nbformat": 4,
2261
+ "nbformat_minor": 1
2262
+ }