Commit
·
1afd526
1
Parent(s):
c30b7da
Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +18 -18
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- a2c-AntBulletEnv-v0/system_info.txt +3 -3
- config.json +1 -1
- replay.mp4 +3 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 2157.43 +/- 64.29
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b832922fb281fe274ffe018e81a0601f46b01b918629b9447a910deb5574f0f
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -37,16 +37,16 @@
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
44 |
":type:": "<class 'function'>",
|
45 |
-
":serialized:": "
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
@@ -63,7 +63,7 @@
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f89c4e01ea0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89c4e01f30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89c4e01fc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89c4e02050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f89c4e020e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f89c4e02170>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89c4e02200>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89c4e02290>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f89c4e02320>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89c4e023b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89c4e02440>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89c4e024d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f896c2ad380>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1684257903348722213,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
44 |
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJDsXj+qSTa+PqopP3fw0L9tFtS/1vWZwFllz7/ymM4+vC6HPxHu1D06Noy//tGCQGUBUT82HbG/eMohQMcWJ7/6duw/XkS0vH/1tr+DJ9S/QfmjP/XlUz99wau+dT5Dv11PZb9Mt96/ubhNwPOKrb/Z5oY/c8PCPgq/ZT4GyzA/eGDEP5Bcvb9JCjo//c/Nvvsxtz67bL2+grUePpms9b5BI7c/NiV9uyYHFT6XBgo/5WUCPycVEz6b0pE+ybmevyoyjr+d7AM/2InyvWya+b9dT2W/TLfev4FInz5o0Tw/5EWzP0OZMz/Zzz6+94S4PxDY8j/Ksrk/QDyzP1RXT7+JTOs+1YdZvuhAcj8wd1a/HCeHP84Nxj+Hbmq/qBSAP6MpZT9yFDA/P68zP9Wl+zxzoUe/zw84v5/K4z6N8gi/XU9lvwshEz+BSJ8+aNE8P5eSuz5O/jM/UzhBvqF3Lz9sjJs/rO8KwOVMLz5LC0M/wrmevj3o+z3GRYk/opuOPw0xXL2yM/C/DXRqvkO9Cz84s2o/T3Mhvzx9zL7Dxp4/8TUUvVyboz8BVJa/c7Ogv11PZb9Mt96/gUifPvOKrb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADA0G1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAe4nLuwAAAABpruG/AAAAAGPKxj0AAAAAtVLjPwAAAABK+vy8AAAAAD7S4T8AAAAAVwjTPQAAAAANK/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Z7yNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH5hXL0AAAAAj3PwvwAAAAAqAZY9AAAAAHiM7T8AAAAAtJUNPgAAAABKHgFAAAAAALWRWL0AAAAAn2blvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApX8bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICkWN29AAAAABGQ6b8AAAAANk7avQAAAADKpPk/AAAAAO7asrwAAAAA9tr6PwAAAABVq4E9AAAAAKI96b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZdIc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3/+hvQAAAAAUR+W/AAAAAJvkeT0AAAAA7aHePwAAAACpYZu9AAAAAKQL/z8AAAAAXRbmvQAAAAB98vC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiXfBvaURqMAWyUTegDjAF0lEdAqcswEt/WlXV9lChoBkdAnKtknG828GgHTegDaAhHQKnRvd4Vym11fZQoaAZHQJt/qfFrEcdoB03oA2gIR0Cp0rMchkiEdX2UKGgGR0CczhRmseXBaAdN6ANoCEdAqdXK8QI2O3V9lChoBkdAmz5Wwu/UOWgHTegDaAhHQKnZpChN/ON1fZQoaAZHQJqL/ck+otNoB03oA2gIR0Cp4bBYmsvJdX2UKGgGR0CZb7M5wOvuaAdN6ANoCEdAqeKlBlcyFnV9lChoBkdAmmwZ3C9AX2gHTegDaAhHQKnkyyqMm4R1fZQoaAZHQJ7y6YoiLVFoB03oA2gIR0Cp51nCGetkdX2UKGgGR0CbkCT1CgK4aAdN6ANoCEdAqe4HezlcQnV9lChoBkdAlv86zmfXgGgHTegDaAhHQKnu+WRA8jl1fZQoaAZHQJ3FhdyDIzZoB03oA2gIR0Cp8TeumrKedX2UKGgGR0CZNHlw97ngaAdN6ANoCEdAqfSKiwjdHnV9lChoBkdAmXqch1Tzd2gHTegDaAhHQKn+DAY51eV1fZQoaAZHQJ8gTybx3FFoB03oA2gIR0Cp/vxekYXPdX2UKGgGR0CY6eLncL0BaAdN6ANoCEdAqgEiL4vexnV9lChoBkdAnlZGd3B55mgHTegDaAhHQKoDk1OTJQt1fZQoaAZHQJdAi7Xg9/1oB03oA2gIR0CqCiZ6+nIidX2UKGgGR0CbDoV9nbqRaAdN6ANoCEdAqgsZBVuJlHV9lChoBkdAm0jdNnGsFWgHTegDaAhHQKoNP9a2Wpt1fZQoaAZHQJjqN58jRlZoB03oA2gIR0CqD7koF3Y+dX2UKGgGR0CU3g8QqZtvaAdN6ANoCEdAqhlOQCCBgHV9lChoBkdAl9osqSX+l2gHTegDaAhHQKoa2UFjd591fZQoaAZHQJcA0/OdGy5oB03oA2gIR0CqHUVM/QjVdX2UKGgGR0CXnCv7FbV0aAdN6ANoCEdAqh/Ba1TisHV9lChoBkdAmE3B8+iaiWgHTegDaAhHQKomV7KJVKh1fZQoaAZHQJx2BP8AJcBoB03oA2gIR0CqJ0rOiWVvdX2UKGgGR0CgQZe5vtMPaAdN6ANoCEdAqil/SF49o3V9lChoBkdAmsH9SIgvDmgHTegDaAhHQKor6kOZssR1fZQoaAZHQKAJ1n8sMApoB03oA2gIR0CqM/P1+RYBdX2UKGgGR0CggCry+YdAaAdN6ANoCEdAqjWdt0mtyXV9lChoBkdAoHF5ODaoM2gHTegDaAhHQKo5JSOR1YB1fZQoaAZHQJz43piZv1loB03oA2gIR0CqPJiKBNEgdX2UKGgGR0CeQC2kzoECaAdN6ANoCEdAqkOOLUCq63V9lChoBkdAm5qD0163RWgHTegDaAhHQKpEkfKZDzB1fZQoaAZHQJ08rcer+5xoB03oA2gIR0CqRta+WWyDdX2UKGgGR0CeXokWAPNFaAdN6ANoCEdAqklTVSXMQnV9lChoBkdAnZ1rT2FnI2gHTegDaAhHQKpQceGO+7F1fZQoaAZHQJzY1SflIVdoB03oA2gIR0CqUd3SKFZgdX2UKGgGR0CbZcfVqesgaAdN6ANoCEdAqlUu+K0laHV9lChoBkdAl2wTCcf/3mgHTegDaAhHQKpZBDZ13dN1fZQoaAZHQJ2NKEsasIVoB03oA2gIR0CqX+HH/95ydX2UKGgGR0Cc9CRbKRuCaAdN6ANoCEdAqmDjsWweNnV9lChoBkdAl8gjVYp2EGgHTegDaAhHQKpjIVkc0ch1fZQoaAZHQJ2pKQeV9ndoB03oA2gIR0CqZaROUMXrdX2UKGgGR0CRvQgam4y5aAdN6ANoCEdAqmxNbLU1AXV9lChoBkdAnb4FPN3W4GgHTegDaAhHQKptRKOktVd1fZQoaAZHQJqZ4zpHI6toB03oA2gIR0CqcDQgs9SudX2UKGgGR0CgHOoZhrnDaAdN6ANoCEdAqnPxtHhCMXV9lChoBkdAnutERFqi5GgHTegDaAhHQKp8RX18LKF1fZQoaAZHQJkSjq1PWQRoB03oA2gIR0CqfTvHDJlrdX2UKGgGR0Cd+UPsiSq3aAdN6ANoCEdAqn9ukWRA8nV9lChoBkdAl4Vc495hSmgHTegDaAhHQKqB490Rvm51fZQoaAZHQJjBQ/jbSJFoB03oA2gIR0CqiFG8mKIjdX2UKGgGR0CXucsnAqNIaAdN6ANoCEdAqolL/S6UaHV9lChoBkdAlsPypNsWPGgHTegDaAhHQKqLdEE1VHZ1fZQoaAZHQJvElz2exwBoB03oA2gIR0Cqjnu4XoC/dX2UKGgGR0Cb0LoOhCdCaAdN6ANoCEdAqpglj9XLeXV9lChoBkdAmtWh1HOKO2gHTegDaAhHQKqZHcNYr8R1fZQoaAZHQJxwnUI9kjJoB03oA2gIR0Cqm1UpVjqfdX2UKGgGR0CcyiGipNsWaAdN6ANoCEdAqp3KcTakAXV9lChoBkdAmGJk/0NBnmgHTegDaAhHQKqkXpNbkfd1fZQoaAZHQJo3XXnQpnZoB03oA2gIR0CqpVImXw9adX2UKGgGR0CcPme5Fw1jaAdN6ANoCEdAqqd0g2ZRbnV9lChoBkdAm9DGQSzw+mgHTegDaAhHQKqp3ObAk9l1fZQoaAZHQJmAw/QjUutoB03oA2gIR0CqsvKzZ6D5dX2UKGgGR0CbAxHM2WIHaAdN6ANoCEdAqrRuVC5VfnV9lChoBkdAmjj/yPMjeWgHTegDaAhHQKq3QS00FbF1fZQoaAZHQJhOjzlLeyloB03oA2gIR0Cquaq94/u9dX2UKGgGR0Cb/4Rh+fAcaAdN6ANoCEdAqsBJfdAPd3V9lChoBkdAnQSa7dznzWgHTegDaAhHQKrBSF23azx1fZQoaAZHQJsi2KBNEgJoB03oA2gIR0Cqw3Tj3mFKdX2UKGgGR0CbtN81Gb1AaAdN6ANoCEdAqsXr0xubZ3V9lChoBkdAm632xQizLWgHTegDaAhHQKrNxxffGdZ1fZQoaAZHQJ0y+Bz3h4toB03oA2gIR0CqzzYqwyIpdX2UKGgGR0Cd26SgXdj5aAdN6ANoCEdAqtKhew9q13V9lChoBkdAnvZ2g8KXwGgHTegDaAhHQKrV9lqagEl1fZQoaAZHQJjTP9Hc1wZoB03oA2gIR0Cq3KMtkFwDdX2UKGgGR0Cbr+U2kzoEaAdN6ANoCEdAqt2idz4k/3V9lChoBkdAmcEp2ll9SmgHTegDaAhHQKrfz/kNnXd1fZQoaAZHQJYQatLcsUZoB03oA2gIR0Cq4l8zImw8dX2UKGgGR0CX/Rg/TspoaAdN6ANoCEdAqukYekpI+XV9lChoBkdAnI40C3gDR2gHTegDaAhHQKrqh/echDB1fZQoaAZHQJse8xk/bCdoB03oA2gIR0Cq7a2OhkAhdX2UKGgGR0CchrMspXp4aAdN6ANoCEdAqvGN+w1R+HV9lChoBkdAm8IXHaN+9mgHTegDaAhHQKr5AuWa+ex1fZQoaAZHQJea8trbg0loB03oA2gIR0Cq+flQl8gIdX2UKGgGR0CV2/Y6GQCCaAdN6ANoCEdAqvwh02cawXV9lChoBkdAl6mqtT1kD2gHTegDaAhHQKr+kZl4C6p1fZQoaAZHQJgWDABT4tZoB03oA2gIR0CrBT+9SMtLdX2UKGgGR0CY9we/Ho5haAdN6ANoCEdAqwYzn1WbPXV9lChoBkdAmAZ6xs2vS2gHTegDaAhHQKsIjdAxBVx1fZQoaAZHQJfaSwdKdx1oB03oA2gIR0CrDBYw7DEWdX2UKGgGR0CWWmaQFLWaaAdN6ANoCEdAqxUHkWAPNHV9lChoBkdAlpo3nEETx2gHTegDaAhHQKsV/uiN83N1fZQoaAZHQJgc3IhhYvFoB03oA2gIR0CrGDLeqJdjdX2UKGgGR0CbKG1jRUm2aAdN6ANoCEdAqxqcmhM8HXV9lChoBkdAnnhQdfb9ImgHTegDaAhHQKshJCkXUH91fZQoaAZHQKB6+irT6SFoB03oA2gIR0CrIiB06o2odX2UKGgGR0CgQpRXXAdoaAdN6ANoCEdAqyRIIt16mnVlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91777c8dfa8603da957b59c958258db6a938f57cd67f2c1011afcba4f39c451b
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34f7ff93dca48923c01c73ce869511c882b50931b23b45e14fcb5d16b0ef152c
|
3 |
size 56894
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.15.
|
2 |
- Python: 3.10.11
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch: 2.0.
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
- Python: 3.10.11
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe29a2f1e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe29a2f1ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe29a2f1f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe29a2f1fc0>", "_build": "<function ActorCriticPolicy._build at 0x7fe29a2f2050>", "forward": "<function ActorCriticPolicy.forward at 0x7fe29a2f20e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe29a2f2170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe29a2f2200>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe29a2f2290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe29a2f2320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe29a2f23b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe29a2f2440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe29a2f4100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684170341254596382, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmsvcmxfY291cnNlLy51bml0Nl92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFyay9ybF9jb3Vyc2UvLnVuaXQ2X3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJkxnL7N5PA85XgCP54o47/N06c/q+ALP0rCNr9+vVY//k+Bv2tYqz7H1vK+H6m8PvJT079pGr0+AxScPq/pIb/DdLo/9e8EQES+Q7+IREU/aVnEP69yi7w07ZW/vfUPPtXUgD+6+xY/qkObPvYB2b/7orI/tMbKPqukaz48T5E/GTPfP1wP9T9nArY/zj9ov/Z7lb/bK5g9mk4xP6+IMb/lcLM/uIGovSav4L/LlpM/tB/7vjueQ8Do3Bg/mLyLv7nxLb6ilCLAd6RCP0Q1TT4WWX6/uvsWP6pDmz7Q/xY/887CP229Rz5vD8s+oCnEP+hMPz9W9549LTKMP55Srr9e1pS/axpFvKQoGL+AVLw/YHdwP8prFr/J6U2/CHxBP7iNkL850SG/m9vWPvi1nz47BJ6/HFlwvqH5oD6YPlo8Fll+v7r7Fj+qQ5s+0P8WPwfUPz9ximI+8fTAPkc8Ij9fthE/GYoPPsMZhD4N1eg+r0qVv6+sYT2U02U/PQwpP0G1mL6BbrS/QClGvlN6FkDA++W+UY54P+3pZr8ijJI/7H3FPpDrIUBGvAO/+jm6vRZZfr/WB9m/qkObPvYB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmSEm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9X5nOwAAAACICfC/AAAAAKgKO70AAAAA7QLaPwAAAACtkMO7AAAAAAZk2T8AAAAA3KiUPQAAAABYSPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/a99tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCAi0r0AAAAALqTqvwAAAAASNMW9AAAAAOK19j8AAAAA1pnrvQAAAADok/k/AAAAAKdfXz0AAAAAvSb3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGsFDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICyMAK+AAAAAJhJ6r8AAAAA1XOCvQAAAABNfOI/AAAAAGughr0AAAAA2Ff/PwAAAABjOcW9AAAAAORG578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACW/442AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdESUvQAAAADCTeu/AAAAAJgzND0AAAAAeKrvPwAAAAAK48c8AAAAAB7V9D8AAAAAbxEqvQAAAAB8M/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyTOjZcs2MAWyUTegDjAF0lEdAqlWULMLWqnV9lChoBkdAmuGjgdfb9WgHTegDaAhHQKpWFVn27Ft1fZQoaAZHQJxviMIeHSFoB03oA2gIR0CqV7D63y7PdX2UKGgGR0CdLV9F4LThaAdN6ANoCEdAqlqbXlKbrnV9lChoBkdAm4pP4/NZ/2gHTegDaAhHQKpi0KVpsXV1fZQoaAZHQJtj3AgxJuloB03oA2gIR0CqY1FFUhmodX2UKGgGR0Cb5gcbzbvgaAdN6ANoCEdAqmTsYuTRpnV9lChoBkdAmtkWtITXa2gHTegDaAhHQKpnzuLrHEN1fZQoaAZHQJw+ztgKF7FoB03oA2gIR0CqcCVp9JBgdX2UKGgGR0CbsWz41xbTaAdN6ANoCEdAqnClZPl+3HV9lChoBkdAm52gIt16mmgHTegDaAhHQKpyRzpX6qN1fZQoaAZHQJrGrKISDh9oB03oA2gIR0CqdUhTn7pFdX2UKGgGR0CawzN34bjtaAdN6ANoCEdAqn2cQkHD8HV9lChoBkdAm+vKuKXOW2gHTegDaAhHQKp+FJtBOYZ1fZQoaAZHQJfwxk9U0eloB03oA2gIR0Cqf50jLSuydX2UKGgGR0Ca4/mKIi1RaAdN6ANoCEdAqoJzgdfb9XV9lChoBkdAmcZWYjSofmgHTegDaAhHQKqKElY2bXp1fZQoaAZHQJlTYam4y45oB03oA2gIR0CqioZ7XxvvdX2UKGgGR0CWybltTDO1aAdN6ANoCEdAqowDgydnTXV9lChoBkdAmoK4S13MZGgHTegDaAhHQKqOsR0U4711fZQoaAZHQJlYL/T9bX9oB03oA2gIR0Cqlk2GZeAvdX2UKGgGR0CZXpm03Ov/aAdN6ANoCEdAqpbCLbYbsHV9lChoBkdAl7HgCW/rSmgHTegDaAhHQKqYWCVbA1x1fZQoaAZHQJZBTbcoH9poB03oA2gIR0Cqm0VHnU2DdX2UKGgGR0CVY/15jYqYaAdN6ANoCEdAqqOMAR02cnV9lChoBkdAl4isRtgrpmgHTegDaAhHQKqkCvzvqkd1fZQoaAZHQJbxPPv8ZUFoB03oA2gIR0CqpaRfOUt7dX2UKGgGR0CXByLQHAymaAdN6ANoCEdAqqiH2dupCXV9lChoBkdAklNsPBi1A2gHTegDaAhHQKqwXu0CzTp1fZQoaAZHQI0nUunMt9RoB03oA2gIR0CqsNPLHMlkdX2UKGgGR0CTZRlAeJYUaAdN6ANoCEdAqrJWoDPnjnV9lChoBkdAmgIUTxoZh2gHTegDaAhHQKq1E2AG0NV1fZQoaAZHQJRmKT7l7t1oB03oA2gIR0CqvODifg76dX2UKGgGR0CTmR2gFotdaAdN6ANoCEdAqr1e8M/hVHV9lChoBkdAkDd+Vs1sL2gHTegDaAhHQKq/A38XN1R1fZQoaAZHQJJTmLBKtgdoB03oA2gIR0CqwdwrMC9zdX2UKGgGR0COeY2YOUdJaAdN6ANoCEdAqsmLPldTpHV9lChoBkdAk8Ty1iONpGgHTegDaAhHQKrKCIa99MN1fZQoaAZHQJL/jLNfPX1oB03oA2gIR0Cqy6IrnTy8dX2UKGgGR0CQOOPXkHUuaAdN6ANoCEdAqs6IAsCkoHV9lChoBkdAjXslNUOuq2gHTegDaAhHQKrWxMdtEXt1fZQoaAZHQJEt8DB/I81oB03oA2gIR0Cq10UDEFW5dX2UKGgGR0CRU/3cYZVGaAdN6ANoCEdAqtjhXhfjTHV9lChoBkdAjxoV/2Cd0GgHTegDaAhHQKrbviONo8J1fZQoaAZHQJJ4OUHIIWxoB03oA2gIR0Cq5AeE7GNrdX2UKGgGR0CTQy/o7muDaAdN6ANoCEdAquSGHerMknV9lChoBkdAmAWfX9R77mgHTegDaAhHQKrmJhYvFm51fZQoaAZHQJIyttEXtShoB03oA2gIR0Cq6RYQJ5VwdX2UKGgGR0CXywRaX8fnaAdN6ANoCEdAqvFmu3c583V9lChoBkdAllW76k6902gHTegDaAhHQKrx60BwMph1fZQoaAZHQJU6kV32VVxoB03oA2gIR0Cq85gS39aVdX2UKGgGR0CXNQrM1TBJaAdN6ANoCEdAqvaEkMTewnV9lChoBkdAlrZtN8E3bWgHTegDaAhHQKr+wUdq+Jx1fZQoaAZHQJgEOCZnctZoB03oA2gIR0Cq/0DaXa8IdX2UKGgGR0CVtklhw2l3aAdN6ANoCEdAqwDeLHdXT3V9lChoBkdAlMfMpobn5mgHTegDaAhHQKsDxHNHH3l1fZQoaAZHQJPRsslLOA1oB03oA2gIR0CrC/hsQ/X5dX2UKGgGR0CWUnQxesxPaAdN6ANoCEdAqwx1+TeO43V9lChoBkdAk4JKaPS2IGgHTegDaAhHQKsOETot+Th1fZQoaAZHQJa79m16Vt5oB03oA2gIR0CrEP3WFvhqdX2UKGgGR0CY/ym+0w8GaAdN6ANoCEdAqxk6oKlYU3V9lChoBkdAlqzLDuSfUWgHTegDaAhHQKsZuHgP3BZ1fZQoaAZHQJPRFJnQID5oB03oA2gIR0CrG1N+CsfadX2UKGgGR0CZ6ARlpXZHaAdN6ANoCEdAqx48gyM1j3V9lChoBkdAk2gdE1EVnGgHTegDaAhHQKsmZ+c6Nl11fZQoaAZHQJXwVyimEXdoB03oA2gIR0CrJui4rjHXdX2UKGgGR0CSijuTibUgaAdN6ANoCEdAqyiDTMJQcnV9lChoBkdAkMxtVaOghGgHTegDaAhHQKsrZ6HCXQd1fZQoaAZHQJOxD4sVclhoB03oA2gIR0CrM599lVcVdX2UKGgGR0CWT5+8Gs3iaAdN6ANoCEdAqzQgdELH/HV9lChoBkdAlF27ZSNwSGgHTegDaAhHQKs1vnLaEjB1fZQoaAZHQJV3VgNPP9loB03oA2gIR0CrOKJHy3CsdX2UKGgGR0CYVRCfpUxVaAdN6ANoCEdAq0DdOCXhO3V9lChoBkdAl4KMlb/wRWgHTegDaAhHQKtBXDWsijd1fZQoaAZHQJjxsd6sySFoB03oA2gIR0CrQvQ++ueSdX2UKGgGR0CZHt1DjR2KaAdN6ANoCEdAq0XagM+eOHV9lChoBkdAmDUFlf7aZmgHTegDaAhHQKtN+Ygq3E11fZQoaAZHQJjyeTgVGkNoB03oA2gIR0CrTnVEd/8VdX2UKGgGR0CXRfnxaxHHaAdN6ANoCEdAq1AUghbGFXV9lChoBkdAmLisglnh9GgHTegDaAhHQKtTBNX5nDl1fZQoaAZHQJkPRb2USqVoB03oA2gIR0CrW0ncUM5PdX2UKGgGR0CX4cBH09QoaAdN6ANoCEdAq1vI/LTx5XV9lChoBkdAmhwgob4rSWgHTegDaAhHQKtdYZNwiq11fZQoaAZHQJlLa03Ov+xoB03oA2gIR0CrYDz9KmKqdX2UKGgGR0CaczPGQ0XQaAdN6ANoCEdAq2h/C0ngHnV9lChoBkdAms3mRNh3JWgHTegDaAhHQKto/9roGIN1fZQoaAZHQJdupPGhmGxoB03oA2gIR0CraqDYh+vydX2UKGgGR0CZpbMhouf3aAdN6ANoCEdAq22MZ75VO3V9lChoBkdAmi/94Z/CqWgHTegDaAhHQKt10kUKzAx1fZQoaAZHQJnU4pc5bQloB03oA2gIR0CrdlChvitJdX2UKGgGR0CaopoAn2IwaAdN6ANoCEdAq3ftBppN9HV9lChoBkdAmy0qMNtqH2gHTegDaAhHQKt60uEmICV1fZQoaAZHQJsGx9JBgNRoB03oA2gIR0Crgx/BFd9ldX2UKGgGR0CZK3LR8c+8aAdN6ANoCEdAq4OekBS1mnV9lChoBkdAlu37u6VdHGgHTegDaAhHQKuFPFz+3ph1fZQoaAZHQJpWjCpFTehoB03oA2gIR0CriDwTM7lrdX2UKGgGR0CYxZOO801qaAdN6ANoCEdAq5CwuuieunV9lChoBkdAme33AZbY9WgHTegDaAhHQKuRL8iwB5p1fZQoaAZHQJjIOnMt9QZoB03oA2gIR0CrktaLOzIFdX2UKGgGR0CX9Ut6ol2NaAdN6ANoCEdAq5W8p9ZzP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-69-generic-x86_64-with-glibc2.31 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f89c4e01ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89c4e01f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89c4e01fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89c4e02050>", "_build": "<function ActorCriticPolicy._build at 0x7f89c4e020e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f89c4e02170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89c4e02200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89c4e02290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f89c4e02320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89c4e023b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89c4e02440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89c4e024d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f896c2ad380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684257903348722213, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJDsXj+qSTa+PqopP3fw0L9tFtS/1vWZwFllz7/ymM4+vC6HPxHu1D06Noy//tGCQGUBUT82HbG/eMohQMcWJ7/6duw/XkS0vH/1tr+DJ9S/QfmjP/XlUz99wau+dT5Dv11PZb9Mt96/ubhNwPOKrb/Z5oY/c8PCPgq/ZT4GyzA/eGDEP5Bcvb9JCjo//c/Nvvsxtz67bL2+grUePpms9b5BI7c/NiV9uyYHFT6XBgo/5WUCPycVEz6b0pE+ybmevyoyjr+d7AM/2InyvWya+b9dT2W/TLfev4FInz5o0Tw/5EWzP0OZMz/Zzz6+94S4PxDY8j/Ksrk/QDyzP1RXT7+JTOs+1YdZvuhAcj8wd1a/HCeHP84Nxj+Hbmq/qBSAP6MpZT9yFDA/P68zP9Wl+zxzoUe/zw84v5/K4z6N8gi/XU9lvwshEz+BSJ8+aNE8P5eSuz5O/jM/UzhBvqF3Lz9sjJs/rO8KwOVMLz5LC0M/wrmevj3o+z3GRYk/opuOPw0xXL2yM/C/DXRqvkO9Cz84s2o/T3Mhvzx9zL7Dxp4/8TUUvVyboz8BVJa/c7Ogv11PZb9Mt96/gUifPvOKrb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADA0G1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAe4nLuwAAAABpruG/AAAAAGPKxj0AAAAAtVLjPwAAAABK+vy8AAAAAD7S4T8AAAAAVwjTPQAAAAANK/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Z7yNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH5hXL0AAAAAj3PwvwAAAAAqAZY9AAAAAHiM7T8AAAAAtJUNPgAAAABKHgFAAAAAALWRWL0AAAAAn2blvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApX8bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICkWN29AAAAABGQ6b8AAAAANk7avQAAAADKpPk/AAAAAO7asrwAAAAA9tr6PwAAAABVq4E9AAAAAKI96b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZdIc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3/+hvQAAAAAUR+W/AAAAAJvkeT0AAAAA7aHePwAAAACpYZu9AAAAAKQL/z8AAAAAXRbmvQAAAAB98vC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiXfBvaURqMAWyUTegDjAF0lEdAqcswEt/WlXV9lChoBkdAnKtknG828GgHTegDaAhHQKnRvd4Vym11fZQoaAZHQJt/qfFrEcdoB03oA2gIR0Cp0rMchkiEdX2UKGgGR0CczhRmseXBaAdN6ANoCEdAqdXK8QI2O3V9lChoBkdAmz5Wwu/UOWgHTegDaAhHQKnZpChN/ON1fZQoaAZHQJqL/ck+otNoB03oA2gIR0Cp4bBYmsvJdX2UKGgGR0CZb7M5wOvuaAdN6ANoCEdAqeKlBlcyFnV9lChoBkdAmmwZ3C9AX2gHTegDaAhHQKnkyyqMm4R1fZQoaAZHQJ7y6YoiLVFoB03oA2gIR0Cp51nCGetkdX2UKGgGR0CbkCT1CgK4aAdN6ANoCEdAqe4HezlcQnV9lChoBkdAlv86zmfXgGgHTegDaAhHQKnu+WRA8jl1fZQoaAZHQJ3FhdyDIzZoB03oA2gIR0Cp8TeumrKedX2UKGgGR0CZNHlw97ngaAdN6ANoCEdAqfSKiwjdHnV9lChoBkdAmXqch1Tzd2gHTegDaAhHQKn+DAY51eV1fZQoaAZHQJ8gTybx3FFoB03oA2gIR0Cp/vxekYXPdX2UKGgGR0CY6eLncL0BaAdN6ANoCEdAqgEiL4vexnV9lChoBkdAnlZGd3B55mgHTegDaAhHQKoDk1OTJQt1fZQoaAZHQJdAi7Xg9/1oB03oA2gIR0CqCiZ6+nIidX2UKGgGR0CbDoV9nbqRaAdN6ANoCEdAqgsZBVuJlHV9lChoBkdAm0jdNnGsFWgHTegDaAhHQKoNP9a2Wpt1fZQoaAZHQJjqN58jRlZoB03oA2gIR0CqD7koF3Y+dX2UKGgGR0CU3g8QqZtvaAdN6ANoCEdAqhlOQCCBgHV9lChoBkdAl9osqSX+l2gHTegDaAhHQKoa2UFjd591fZQoaAZHQJcA0/OdGy5oB03oA2gIR0CqHUVM/QjVdX2UKGgGR0CXnCv7FbV0aAdN6ANoCEdAqh/Ba1TisHV9lChoBkdAmE3B8+iaiWgHTegDaAhHQKomV7KJVKh1fZQoaAZHQJx2BP8AJcBoB03oA2gIR0CqJ0rOiWVvdX2UKGgGR0CgQZe5vtMPaAdN6ANoCEdAqil/SF49o3V9lChoBkdAmsH9SIgvDmgHTegDaAhHQKor6kOZssR1fZQoaAZHQKAJ1n8sMApoB03oA2gIR0CqM/P1+RYBdX2UKGgGR0CggCry+YdAaAdN6ANoCEdAqjWdt0mtyXV9lChoBkdAoHF5ODaoM2gHTegDaAhHQKo5JSOR1YB1fZQoaAZHQJz43piZv1loB03oA2gIR0CqPJiKBNEgdX2UKGgGR0CeQC2kzoECaAdN6ANoCEdAqkOOLUCq63V9lChoBkdAm5qD0163RWgHTegDaAhHQKpEkfKZDzB1fZQoaAZHQJ08rcer+5xoB03oA2gIR0CqRta+WWyDdX2UKGgGR0CeXokWAPNFaAdN6ANoCEdAqklTVSXMQnV9lChoBkdAnZ1rT2FnI2gHTegDaAhHQKpQceGO+7F1fZQoaAZHQJzY1SflIVdoB03oA2gIR0CqUd3SKFZgdX2UKGgGR0CbZcfVqesgaAdN6ANoCEdAqlUu+K0laHV9lChoBkdAl2wTCcf/3mgHTegDaAhHQKpZBDZ13dN1fZQoaAZHQJ2NKEsasIVoB03oA2gIR0CqX+HH/95ydX2UKGgGR0Cc9CRbKRuCaAdN6ANoCEdAqmDjsWweNnV9lChoBkdAl8gjVYp2EGgHTegDaAhHQKpjIVkc0ch1fZQoaAZHQJ2pKQeV9ndoB03oA2gIR0CqZaROUMXrdX2UKGgGR0CRvQgam4y5aAdN6ANoCEdAqmxNbLU1AXV9lChoBkdAnb4FPN3W4GgHTegDaAhHQKptRKOktVd1fZQoaAZHQJqZ4zpHI6toB03oA2gIR0CqcDQgs9SudX2UKGgGR0CgHOoZhrnDaAdN6ANoCEdAqnPxtHhCMXV9lChoBkdAnutERFqi5GgHTegDaAhHQKp8RX18LKF1fZQoaAZHQJkSjq1PWQRoB03oA2gIR0CqfTvHDJlrdX2UKGgGR0Cd+UPsiSq3aAdN6ANoCEdAqn9ukWRA8nV9lChoBkdAl4Vc495hSmgHTegDaAhHQKqB490Rvm51fZQoaAZHQJjBQ/jbSJFoB03oA2gIR0CqiFG8mKIjdX2UKGgGR0CXucsnAqNIaAdN6ANoCEdAqolL/S6UaHV9lChoBkdAlsPypNsWPGgHTegDaAhHQKqLdEE1VHZ1fZQoaAZHQJvElz2exwBoB03oA2gIR0Cqjnu4XoC/dX2UKGgGR0Cb0LoOhCdCaAdN6ANoCEdAqpglj9XLeXV9lChoBkdAmtWh1HOKO2gHTegDaAhHQKqZHcNYr8R1fZQoaAZHQJxwnUI9kjJoB03oA2gIR0Cqm1UpVjqfdX2UKGgGR0CcyiGipNsWaAdN6ANoCEdAqp3KcTakAXV9lChoBkdAmGJk/0NBnmgHTegDaAhHQKqkXpNbkfd1fZQoaAZHQJo3XXnQpnZoB03oA2gIR0CqpVImXw9adX2UKGgGR0CcPme5Fw1jaAdN6ANoCEdAqqd0g2ZRbnV9lChoBkdAm9DGQSzw+mgHTegDaAhHQKqp3ObAk9l1fZQoaAZHQJmAw/QjUutoB03oA2gIR0CqsvKzZ6D5dX2UKGgGR0CbAxHM2WIHaAdN6ANoCEdAqrRuVC5VfnV9lChoBkdAmjj/yPMjeWgHTegDaAhHQKq3QS00FbF1fZQoaAZHQJhOjzlLeyloB03oA2gIR0Cquaq94/u9dX2UKGgGR0Cb/4Rh+fAcaAdN6ANoCEdAqsBJfdAPd3V9lChoBkdAnQSa7dznzWgHTegDaAhHQKrBSF23azx1fZQoaAZHQJsi2KBNEgJoB03oA2gIR0Cqw3Tj3mFKdX2UKGgGR0CbtN81Gb1AaAdN6ANoCEdAqsXr0xubZ3V9lChoBkdAm632xQizLWgHTegDaAhHQKrNxxffGdZ1fZQoaAZHQJ0y+Bz3h4toB03oA2gIR0CqzzYqwyIpdX2UKGgGR0Cd26SgXdj5aAdN6ANoCEdAqtKhew9q13V9lChoBkdAnvZ2g8KXwGgHTegDaAhHQKrV9lqagEl1fZQoaAZHQJjTP9Hc1wZoB03oA2gIR0Cq3KMtkFwDdX2UKGgGR0Cbr+U2kzoEaAdN6ANoCEdAqt2idz4k/3V9lChoBkdAmcEp2ll9SmgHTegDaAhHQKrfz/kNnXd1fZQoaAZHQJYQatLcsUZoB03oA2gIR0Cq4l8zImw8dX2UKGgGR0CX/Rg/TspoaAdN6ANoCEdAqukYekpI+XV9lChoBkdAnI40C3gDR2gHTegDaAhHQKrqh/echDB1fZQoaAZHQJse8xk/bCdoB03oA2gIR0Cq7a2OhkAhdX2UKGgGR0CchrMspXp4aAdN6ANoCEdAqvGN+w1R+HV9lChoBkdAm8IXHaN+9mgHTegDaAhHQKr5AuWa+ex1fZQoaAZHQJea8trbg0loB03oA2gIR0Cq+flQl8gIdX2UKGgGR0CV2/Y6GQCCaAdN6ANoCEdAqvwh02cawXV9lChoBkdAl6mqtT1kD2gHTegDaAhHQKr+kZl4C6p1fZQoaAZHQJgWDABT4tZoB03oA2gIR0CrBT+9SMtLdX2UKGgGR0CY9we/Ho5haAdN6ANoCEdAqwYzn1WbPXV9lChoBkdAmAZ6xs2vS2gHTegDaAhHQKsIjdAxBVx1fZQoaAZHQJfaSwdKdx1oB03oA2gIR0CrDBYw7DEWdX2UKGgGR0CWWmaQFLWaaAdN6ANoCEdAqxUHkWAPNHV9lChoBkdAlpo3nEETx2gHTegDaAhHQKsV/uiN83N1fZQoaAZHQJgc3IhhYvFoB03oA2gIR0CrGDLeqJdjdX2UKGgGR0CbKG1jRUm2aAdN6ANoCEdAqxqcmhM8HXV9lChoBkdAnnhQdfb9ImgHTegDaAhHQKshJCkXUH91fZQoaAZHQKB6+irT6SFoB03oA2gIR0CrIiB06o2odX2UKGgGR0CgQpRXXAdoaAdN6ANoCEdAqyRIIt16mnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed4393b851fa6d02b30dbaaddf98a7b589bd377e77fdb14f0d0069258f3d015a
|
3 |
+
size 1252267
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 2157.42662363142, "std_reward": 64.29249219597678, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-16T18:40:07.016118"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2176
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:529668e9c95f4753b27372ab417e1ef4b3fa1c1c2ab6865e9ef33201e1185a0b
|
3 |
size 2176
|