marleyshan21 commited on
Commit
1b1b510
·
1 Parent(s): ae60cbb

Tried 4th time PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 300.17 +/- 14.49
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a5d600a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a5d600ae8>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a5d600b70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a5d600bf8>", "_build": "<function ActorCriticPolicy._build at 0x7f8a5d600c80>", "forward": "<function ActorCriticPolicy.forward at 0x7f8a5d600d08>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a5d600d90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8a5d600e18>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a5d600ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a5d600f28>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a5d603048>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7f8a5d5f3b38>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7f8a5d5f3b70>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7f8a5d5f3ba8>", "_abc_negative_cache_version": 58}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSwiFlIwBQ5R0lFKUjARoaWdolGgTKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSwiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMDWJvdW5kZWRfYWJvdmWUaBMolggAAAAAAAAAAAAAAAAAAACUaCJLCIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVhwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 7012352, "_total_timesteps": 7000000, "seed": null, "action_noise": null, "start_time": 1651843448.3269794, "learning_rate": 0.00015, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8jqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADowOj6TIFA/lNdIPaPkO7+mtL4+SrnrvQAAAAAAAAAAZlbkuuFknro/rx42jwYtMZQthTotP0O1AACAPwAAgD/NEJS7uHaNu3qALjy9J408VJLevHLqcD0AAIA/AACAP2ANMD5ehhc/imymvR5nNL/qG6E+TVL1vQAAAAAAAAAAzZmkPPaUR7qQmOC72y5sNfCudLgzY9a0AACAPwAAgD9mdoU79nBiukO44Lq8HzQ0hT4Ou8qyAToAAIA/AACAP83utjxxIjy70uRbvm+BIT19kRc8ciK+OgAAgD8AAIA/ZhumPIV157sULI+8ANIdPbQCg7v22xw7AACAPwAAgD/NAti9KJ7EPa5HtD7Z8Mq+0gpWPXsXWz4AAAAAAAAAALOlBb32nFq6wmwWPOfKlTa1QYk5tm6PNQAAAAAAAAAARgumPs/AcT/5iSM9ruE0vzESEz9pRyu+AAAAAAAAAACAV7q9j+ICP22YFryRRTi/83IdvqAtFz0AAAAAAAAAADMFMTyPtjW6hg4xtEkeg611TUe7TuatMwAAgD8AAIA/jQQSPkB8lz875Z4+zbM1v98AoD4ypCE+AAAAAAAAAABm81A9KZJBPRglrb5Wo6W+PfA6vQvjlr4AAAAAAAAAACZR4j0Wvaw/BviWPuaEBb+ub08+i6FcPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0017645714285714487, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ3Vz8beJQUCUhpRSlIwBbJRLdIwBdJRHQMAVDZM10kp1fZQoaAZoCWgPQwj2fqMdtwlzQJSGlFKUaBVLoGgWR0DAFQ6Rp1zRdX2UKGgGaAloD0MIdVd2wWCTcUCUhpRSlGgVS6xoFkdAwBUR27FsHnV9lChoBmgJaA9DCMyYgjWOCXNAlIaUUpRoFUvAaBZHQMAVFmR3eN11fZQoaAZoCWgPQwiAf0qVqINxQJSGlFKUaBVLtGgWR0DAFSA8SwnqdX2UKGgGaAloD0MIsffii7ZfcUCUhpRSlGgVS75oFkdAwBUpcE/0NHV9lChoBmgJaA9DCGn+mNYmonNAlIaUUpRoFUu8aBZHQMAVLGKhtch1fZQoaAZoCWgPQwix4emVMq9zQJSGlFKUaBVLy2gWR0DAFTD0pVjqdX2UKGgGaAloD0MIsACmDFyvcUCUhpRSlGgVS6BoFkdAwBVJWXC0nnV9lChoBmgJaA9DCCh8tg7OU3JAlIaUUpRoFUuYaBZHQMAVTQYUFjd1fZQoaAZoCWgPQwjsMCb9fSJyQJSGlFKUaBVLy2gWR0DAFUxas6q9dX2UKGgGaAloD0MIe0ljtI4fcUCUhpRSlGgVS5xoFkdAwBVOVbA1vXV9lChoBmgJaA9DCHMSSl+I43JAlIaUUpRoFUu+aBZHQMAVUZ75VOt1fZQoaAZoCWgPQwhsXtVZ7fhwQJSGlFKUaBVLomgWR0DAFVY5Lh73dX2UKGgGaAloD0MIG9e/63OickCUhpRSlGgVS7VoFkdAwBVaT+NtInV9lChoBmgJaA9DCHy2Dg52nHJAlIaUUpRoFUvEaBZHQMAVYNqHoHN1fZQoaAZoCWgPQwjuBPuvs4dyQJSGlFKUaBVLxWgWR0DAFWP7+DODdX2UKGgGaAloD0MIumkzTgOyckCUhpRSlGgVS71oFkdAwBVk/tY0VXV9lChoBmgJaA9DCEoLl1XY/nFAlIaUUpRoFUu2aBZHQMAVZnaWX1J1fZQoaAZoCWgPQwidSDDVDERxQJSGlFKUaBVLwmgWR0DAFXWzyBkJdX2UKGgGaAloD0MIXOhKBGq+cUCUhpRSlGgVS7hoFkdAwBV68an753V9lChoBmgJaA9DCAPPvYeLenJAlIaUUpRoFUu8aBZHQMAVhFF+d9V1fZQoaAZoCWgPQwhqos9HGRJzQJSGlFKUaBVLxmgWR0DAFYRlWfbsdX2UKGgGaAloD0MIv/IgPUU4b0CUhpRSlGgVS6JoFkdAwBWTH8TBZnV9lChoBmgJaA9DCCUfuwsUfXBAlIaUUpRoFUunaBZHQMAVlmIKtxN1fZQoaAZoCWgPQwg2V81zBOVzQJSGlFKUaBVLxGgWR0DAFaEALiMpdX2UKGgGaAloD0MIWVGDaVhpcECUhpRSlGgVS8BoFkdAwBWj3h4t6HV9lChoBmgJaA9DCB/XhopxQHFAlIaUUpRoFUvAaBZHQMAVp63Zwn91fZQoaAZoCWgPQwjNdoU+2JBwQJSGlFKUaBVLuGgWR0DAFakXxe9jdX2UKGgGaAloD0MIq5hKP6GccUCUhpRSlGgVS6doFkdAwBWs9XcQAnV9lChoBmgJaA9DCGr3qwBfuXNAlIaUUpRoFUu8aBZHQMAVr5T6zmh1fZQoaAZoCWgPQwj6KY4Db7hxQJSGlFKUaBVLs2gWR0DAFbWhM8HOdX2UKGgGaAloD0MIFr8prJQ1ckCUhpRSlGgVS7xoFkdAwBW69/SYxHV9lChoBmgJaA9DCMA/pUoU53FAlIaUUpRoFUuXaBZHQMAVvDCgsbx1fZQoaAZoCWgPQwg1fuGVJNBpQJSGlFKUaBVN6ANoFkdAwBXJhAnlXHV9lChoBmgJaA9DCCmy1lDqiXFAlIaUUpRoFUuvaBZHQMAVzUqYqoZ1fZQoaAZoCWgPQwgJM23/CmByQJSGlFKUaBVLlGgWR0DAFdzSApazdX2UKGgGaAloD0MILqwb745YSkCUhpRSlGgVS2FoFkdAwBXd8Q7LdXV9lChoBmgJaA9DCLjmjv7XXXNAlIaUUpRoFUvDaBZHQMAV4K8tf5V1fZQoaAZoCWgPQwjjpZvEoNFwQJSGlFKUaBVLq2gWR0DAFeTFZPl/dX2UKGgGaAloD0MIPsxetp0/dECUhpRSlGgVS+NoFkdAwBXv7j1f3XV9lChoBmgJaA9DCHb7rDKTKnFAlIaUUpRoFUumaBZHQMAV8A8B+4N1fZQoaAZoCWgPQwhtqYO83gtzQJSGlFKUaBVLl2gWR0DAFfDa4+bFdX2UKGgGaAloD0MI12t6UJD6ckCUhpRSlGgVS6hoFkdAwBXzuWKMvXV9lChoBmgJaA9DCF9AL9z5nHFAlIaUUpRoFUu2aBZHQMAWAynUDuB1fZQoaAZoCWgPQwg0uRgDK+lyQJSGlFKUaBVLr2gWR0DAFgmbgCOndX2UKGgGaAloD0MIkj6tor9XcECUhpRSlGgVS6VoFkdAwBYKgFotc3V9lChoBmgJaA9DCI9uhEVFdXRAlIaUUpRoFUvcaBZHQMAWEKQRwqB1fZQoaAZoCWgPQwjdJ0cBIkJyQJSGlFKUaBVLw2gWR0DAFhnR5TqCdX2UKGgGaAloD0MIKJzdWmbHckCUhpRSlGgVS7doFkdAwBYg4pc5bXV9lChoBmgJaA9DCKJinL+JfnNAlIaUUpRoFUu2aBZHQMAWI/NiYsx1fZQoaAZoCWgPQwif5A6bSOJwQJSGlFKUaBVLomgWR0DAFipZwGW2dX2UKGgGaAloD0MIHozYJwAzckCUhpRSlGgVS6VoFkdAwBYuMQ2/BXV9lChoBmgJaA9DCMO3sG48enJAlIaUUpRoFUuQaBZHQMAWMy2hIvt1fZQoaAZoCWgPQwiBlUOLbIhyQJSGlFKUaBVLj2gWR0DAFjN87ZFodX2UKGgGaAloD0MIdQXbiCebc0CUhpRSlGgVS6doFkdAwBYzAQg9vHV9lChoBmgJaA9DCP/sR4oIRXJAlIaUUpRoFUvFaBZHQMAWORWLgoB1fZQoaAZoCWgPQwijc36KYwJyQJSGlFKUaBVLrWgWR0DAFj+lj3EidX2UKGgGaAloD0MIEVX4M3wLc0CUhpRSlGgVS79oFkdAwBZL2C/XXnV9lChoBmgJaA9DCDygbMoVX3BAlIaUUpRoFUuYaBZHQMAWT7lijL11fZQoaAZoCWgPQwhC6Qshp5pxQJSGlFKUaBVLsGgWR0DAFlqdjG1hdX2UKGgGaAloD0MIvmvQl55Oc0CUhpRSlGgVS75oFkdAwBZbmZE2HnV9lChoBmgJaA9DCBqjdVS1RnFAlIaUUpRoFUuoaBZHQMAWZ1yWAwx1fZQoaAZoCWgPQwhTzaylgO9zQJSGlFKUaBVLu2gWR0DAFmcwBYFJdX2UKGgGaAloD0MIfsNEg5SEcECUhpRSlGgVS6hoFkdAwBZvEl3QlnV9lChoBmgJaA9DCOD1mbN+/HFAlIaUUpRoFUuxaBZHQMAWfXXiBGx1fZQoaAZoCWgPQwiPi2oR0XlzQJSGlFKUaBVLxWgWR0DAFoA9ovi+dX2UKGgGaAloD0MIG5yIfi2XckCUhpRSlGgVS6RoFkdAwBaAvOhTO3V9lChoBmgJaA9DCEJcOXtnL3JAlIaUUpRoFUukaBZHQMAWh0Xxe9l1fZQoaAZoCWgPQwireCPziDFzQJSGlFKUaBVLs2gWR0DAFohdKNADdX2UKGgGaAloD0MIDaoNTkQkckCUhpRSlGgVS8NoFkdAwBaKTlkpZ3V9lChoBmgJaA9DCLFSQUVVrXNAlIaUUpRoFUuwaBZHQMAWk3d0q6R1fZQoaAZoCWgPQwh5P26/fLNzQJSGlFKUaBVLz2gWR0DAFpR3iaRZdX2UKGgGaAloD0MIwF32686VcUCUhpRSlGgVS7JoFkdAwBafYnv2G3V9lChoBmgJaA9DCM2v5gCBFXRAlIaUUpRoFUutaBZHQMAWoMA/9pB1fZQoaAZoCWgPQwgyVpv/l9twQJSGlFKUaBVLoWgWR0DAFqYumJm/dX2UKGgGaAloD0MIY0FhUGYLc0CUhpRSlGgVS7VoFkdAwBauWBSUDHV9lChoBmgJaA9DCLoxPWEJaHFAlIaUUpRoFUufaBZHQMAWsBWgezV1fZQoaAZoCWgPQwiWJM/1fZtxQJSGlFKUaBVLsmgWR0DAFr9Z7ojfdX2UKGgGaAloD0MIGTkLe5rdcUCUhpRSlGgVS8NoFkdAwBa/uk1uSHV9lChoBmgJaA9DCNrFNNO9oXJAlIaUUpRoFUufaBZHQMAWxIhyKel1fZQoaAZoCWgPQwiPjUC8rnVCQJSGlFKUaBVLUmgWR0DAFsVjd56ddX2UKGgGaAloD0MIgPPixBeKcUCUhpRSlGgVS5poFkdAwBbLTG5tnHV9lChoBmgJaA9DCCszpfW3MW9AlIaUUpRoFUu5aBZHQMAW0mDL8rJ1fZQoaAZoCWgPQwiITPkQlEZwQJSGlFKUaBVLuGgWR0DAFtJUgjhUdX2UKGgGaAloD0MI5X6HooBWcUCUhpRSlGgVS61oFkdAwBbWUqQRw3V9lChoBmgJaA9DCOGYZU+CmW9AlIaUUpRoFUuoaBZHQMAW6qmj0th1fZQoaAZoCWgPQwhWSPlJ9cBxQJSGlFKUaBVLzGgWR0DAFu8L0BfbdX2UKGgGaAloD0MIMh6lEh6xcUCUhpRSlGgVS85oFkdAwBbxD63y7XV9lChoBmgJaA9DCEKVmj2QJnJAlIaUUpRoFUvvaBZHQMAW89yDIzZ1fZQoaAZoCWgPQwjKayV0F+VxQJSGlFKUaBVLn2gWR0DAFvcgGKQ8dX2UKGgGaAloD0MIc2a7Qh8IRUCUhpRSlGgVS1doFkdAwBb7XLeQ+3V9lChoBmgJaA9DCEt2bASiuHBAlIaUUpRoFUvFaBZHQMAXAC8vmHR1fZQoaAZoCWgPQwjv/nivGg5zQJSGlFKUaBVLm2gWR0DAFwcn9ehPdX2UKGgGaAloD0MIiXjr/BtfckCUhpRSlGgVS9BoFkdAwBcPcC5mRXV9lChoBmgJaA9DCILix5i7JXBAlIaUUpRoFUuiaBZHQMAXD3Mpw0h1fZQoaAZoCWgPQwiaQ1IL5V9wQJSGlFKUaBVLpGgWR0DAFxdXcQAddX2UKGgGaAloD0MITDWzlkK/c0CUhpRSlGgVS75oFkdAwBcXQw9JSXV9lChoBmgJaA9DCHO7l/ukHnJAlIaUUpRoFUu+aBZHQMAXHQDV6NV1fZQoaAZoCWgPQwgSpb3BF2pxQJSGlFKUaBVLpmgWR0DAFx+Q0XP7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2568, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-70-generic-x86_64-with-debian-buster-sid #78~18.04.1-Ubuntu SMP Sat Mar 20 14:10:07 UTC 2021", "Python": "3.6.15", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9954f7bf9060e881f15f2329189152be7cadbc36cfe3822bfcfae6bce247bd3
3
+ size 144277
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.3.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a5d600a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a5d600ae8>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a5d600b70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a5d600bf8>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8a5d600c80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8a5d600d08>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a5d600d90>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8a5d600e18>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a5d600ea0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a5d600f28>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a5d603048>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_registry": "<_weakrefset.WeakSet object at 0x7f8a5d5f3b38>",
20
+ "_abc_cache": "<_weakrefset.WeakSet object at 0x7f8a5d5f3b70>",
21
+ "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7f8a5d5f3ba8>",
22
+ "_abc_negative_cache_version": 58
23
+ },
24
+ "verbose": 1,
25
+ "policy_kwargs": {},
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gAWVpAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSwiFlIwBQ5R0lFKUjARoaWdolGgTKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSwiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMDWJvdW5kZWRfYWJvdmWUaBMolggAAAAAAAAAAAAAAAAAAACUaCJLCIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
29
+ "dtype": "float32",
30
+ "shape": [
31
+ 8
32
+ ],
33
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
34
+ "high": "[inf inf inf inf inf inf inf inf]",
35
+ "bounded_below": "[False False False False False False False False]",
36
+ "bounded_above": "[False False False False False False False False]",
37
+ "_np_random": null
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
41
+ ":serialized:": "gAWVhwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
42
+ "n": 4,
43
+ "shape": [],
44
+ "dtype": "int64",
45
+ "_np_random": null
46
+ },
47
+ "n_envs": 16,
48
+ "num_timesteps": 7012352,
49
+ "_total_timesteps": 7000000,
50
+ "seed": null,
51
+ "action_noise": null,
52
+ "start_time": 1651843448.3269794,
53
+ "learning_rate": 0.00015,
54
+ "tensorboard_log": null,
55
+ "lr_schedule": {
56
+ ":type:": "<class 'function'>",
57
+ ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8jqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
58
+ },
59
+ "_last_obs": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADowOj6TIFA/lNdIPaPkO7+mtL4+SrnrvQAAAAAAAAAAZlbkuuFknro/rx42jwYtMZQthTotP0O1AACAPwAAgD/NEJS7uHaNu3qALjy9J408VJLevHLqcD0AAIA/AACAP2ANMD5ehhc/imymvR5nNL/qG6E+TVL1vQAAAAAAAAAAzZmkPPaUR7qQmOC72y5sNfCudLgzY9a0AACAPwAAgD9mdoU79nBiukO44Lq8HzQ0hT4Ou8qyAToAAIA/AACAP83utjxxIjy70uRbvm+BIT19kRc8ciK+OgAAgD8AAIA/ZhumPIV157sULI+8ANIdPbQCg7v22xw7AACAPwAAgD/NAti9KJ7EPa5HtD7Z8Mq+0gpWPXsXWz4AAAAAAAAAALOlBb32nFq6wmwWPOfKlTa1QYk5tm6PNQAAAAAAAAAARgumPs/AcT/5iSM9ruE0vzESEz9pRyu+AAAAAAAAAACAV7q9j+ICP22YFryRRTi/83IdvqAtFz0AAAAAAAAAADMFMTyPtjW6hg4xtEkeg611TUe7TuatMwAAgD8AAIA/jQQSPkB8lz875Z4+zbM1v98AoD4ypCE+AAAAAAAAAABm81A9KZJBPRglrb5Wo6W+PfA6vQvjlr4AAAAAAAAAACZR4j0Wvaw/BviWPuaEBb+ub08+i6FcPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": null,
68
+ "_episode_num": 0,
69
+ "use_sde": false,
70
+ "sde_sample_freq": -1,
71
+ "_current_progress_remaining": -0.0017645714285714487,
72
+ "ep_info_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ3Vz8beJQUCUhpRSlIwBbJRLdIwBdJRHQMAVDZM10kp1fZQoaAZoCWgPQwj2fqMdtwlzQJSGlFKUaBVLoGgWR0DAFQ6Rp1zRdX2UKGgGaAloD0MIdVd2wWCTcUCUhpRSlGgVS6xoFkdAwBUR27FsHnV9lChoBmgJaA9DCMyYgjWOCXNAlIaUUpRoFUvAaBZHQMAVFmR3eN11fZQoaAZoCWgPQwiAf0qVqINxQJSGlFKUaBVLtGgWR0DAFSA8SwnqdX2UKGgGaAloD0MIsffii7ZfcUCUhpRSlGgVS75oFkdAwBUpcE/0NHV9lChoBmgJaA9DCGn+mNYmonNAlIaUUpRoFUu8aBZHQMAVLGKhtch1fZQoaAZoCWgPQwix4emVMq9zQJSGlFKUaBVLy2gWR0DAFTD0pVjqdX2UKGgGaAloD0MIsACmDFyvcUCUhpRSlGgVS6BoFkdAwBVJWXC0nnV9lChoBmgJaA9DCCh8tg7OU3JAlIaUUpRoFUuYaBZHQMAVTQYUFjd1fZQoaAZoCWgPQwjsMCb9fSJyQJSGlFKUaBVLy2gWR0DAFUxas6q9dX2UKGgGaAloD0MIe0ljtI4fcUCUhpRSlGgVS5xoFkdAwBVOVbA1vXV9lChoBmgJaA9DCHMSSl+I43JAlIaUUpRoFUu+aBZHQMAVUZ75VOt1fZQoaAZoCWgPQwhsXtVZ7fhwQJSGlFKUaBVLomgWR0DAFVY5Lh73dX2UKGgGaAloD0MIG9e/63OickCUhpRSlGgVS7VoFkdAwBVaT+NtInV9lChoBmgJaA9DCHy2Dg52nHJAlIaUUpRoFUvEaBZHQMAVYNqHoHN1fZQoaAZoCWgPQwjuBPuvs4dyQJSGlFKUaBVLxWgWR0DAFWP7+DODdX2UKGgGaAloD0MIumkzTgOyckCUhpRSlGgVS71oFkdAwBVk/tY0VXV9lChoBmgJaA9DCEoLl1XY/nFAlIaUUpRoFUu2aBZHQMAVZnaWX1J1fZQoaAZoCWgPQwidSDDVDERxQJSGlFKUaBVLwmgWR0DAFXWzyBkJdX2UKGgGaAloD0MIXOhKBGq+cUCUhpRSlGgVS7hoFkdAwBV68an753V9lChoBmgJaA9DCAPPvYeLenJAlIaUUpRoFUu8aBZHQMAVhFF+d9V1fZQoaAZoCWgPQwhqos9HGRJzQJSGlFKUaBVLxmgWR0DAFYRlWfbsdX2UKGgGaAloD0MIv/IgPUU4b0CUhpRSlGgVS6JoFkdAwBWTH8TBZnV9lChoBmgJaA9DCCUfuwsUfXBAlIaUUpRoFUunaBZHQMAVlmIKtxN1fZQoaAZoCWgPQwg2V81zBOVzQJSGlFKUaBVLxGgWR0DAFaEALiMpdX2UKGgGaAloD0MIWVGDaVhpcECUhpRSlGgVS8BoFkdAwBWj3h4t6HV9lChoBmgJaA9DCB/XhopxQHFAlIaUUpRoFUvAaBZHQMAVp63Zwn91fZQoaAZoCWgPQwjNdoU+2JBwQJSGlFKUaBVLuGgWR0DAFakXxe9jdX2UKGgGaAloD0MIq5hKP6GccUCUhpRSlGgVS6doFkdAwBWs9XcQAnV9lChoBmgJaA9DCGr3qwBfuXNAlIaUUpRoFUu8aBZHQMAVr5T6zmh1fZQoaAZoCWgPQwj6KY4Db7hxQJSGlFKUaBVLs2gWR0DAFbWhM8HOdX2UKGgGaAloD0MIFr8prJQ1ckCUhpRSlGgVS7xoFkdAwBW69/SYxHV9lChoBmgJaA9DCMA/pUoU53FAlIaUUpRoFUuXaBZHQMAVvDCgsbx1fZQoaAZoCWgPQwg1fuGVJNBpQJSGlFKUaBVN6ANoFkdAwBXJhAnlXHV9lChoBmgJaA9DCCmy1lDqiXFAlIaUUpRoFUuvaBZHQMAVzUqYqoZ1fZQoaAZoCWgPQwgJM23/CmByQJSGlFKUaBVLlGgWR0DAFdzSApazdX2UKGgGaAloD0MILqwb745YSkCUhpRSlGgVS2FoFkdAwBXd8Q7LdXV9lChoBmgJaA9DCLjmjv7XXXNAlIaUUpRoFUvDaBZHQMAV4K8tf5V1fZQoaAZoCWgPQwjjpZvEoNFwQJSGlFKUaBVLq2gWR0DAFeTFZPl/dX2UKGgGaAloD0MIPsxetp0/dECUhpRSlGgVS+NoFkdAwBXv7j1f3XV9lChoBmgJaA9DCHb7rDKTKnFAlIaUUpRoFUumaBZHQMAV8A8B+4N1fZQoaAZoCWgPQwhtqYO83gtzQJSGlFKUaBVLl2gWR0DAFfDa4+bFdX2UKGgGaAloD0MI12t6UJD6ckCUhpRSlGgVS6hoFkdAwBXzuWKMvXV9lChoBmgJaA9DCF9AL9z5nHFAlIaUUpRoFUu2aBZHQMAWAynUDuB1fZQoaAZoCWgPQwg0uRgDK+lyQJSGlFKUaBVLr2gWR0DAFgmbgCOndX2UKGgGaAloD0MIkj6tor9XcECUhpRSlGgVS6VoFkdAwBYKgFotc3V9lChoBmgJaA9DCI9uhEVFdXRAlIaUUpRoFUvcaBZHQMAWEKQRwqB1fZQoaAZoCWgPQwjdJ0cBIkJyQJSGlFKUaBVLw2gWR0DAFhnR5TqCdX2UKGgGaAloD0MIKJzdWmbHckCUhpRSlGgVS7doFkdAwBYg4pc5bXV9lChoBmgJaA9DCKJinL+JfnNAlIaUUpRoFUu2aBZHQMAWI/NiYsx1fZQoaAZoCWgPQwif5A6bSOJwQJSGlFKUaBVLomgWR0DAFipZwGW2dX2UKGgGaAloD0MIHozYJwAzckCUhpRSlGgVS6VoFkdAwBYuMQ2/BXV9lChoBmgJaA9DCMO3sG48enJAlIaUUpRoFUuQaBZHQMAWMy2hIvt1fZQoaAZoCWgPQwiBlUOLbIhyQJSGlFKUaBVLj2gWR0DAFjN87ZFodX2UKGgGaAloD0MIdQXbiCebc0CUhpRSlGgVS6doFkdAwBYzAQg9vHV9lChoBmgJaA9DCP/sR4oIRXJAlIaUUpRoFUvFaBZHQMAWORWLgoB1fZQoaAZoCWgPQwijc36KYwJyQJSGlFKUaBVLrWgWR0DAFj+lj3EidX2UKGgGaAloD0MIEVX4M3wLc0CUhpRSlGgVS79oFkdAwBZL2C/XXnV9lChoBmgJaA9DCDygbMoVX3BAlIaUUpRoFUuYaBZHQMAWT7lijL11fZQoaAZoCWgPQwhC6Qshp5pxQJSGlFKUaBVLsGgWR0DAFlqdjG1hdX2UKGgGaAloD0MIvmvQl55Oc0CUhpRSlGgVS75oFkdAwBZbmZE2HnV9lChoBmgJaA9DCBqjdVS1RnFAlIaUUpRoFUuoaBZHQMAWZ1yWAwx1fZQoaAZoCWgPQwhTzaylgO9zQJSGlFKUaBVLu2gWR0DAFmcwBYFJdX2UKGgGaAloD0MIfsNEg5SEcECUhpRSlGgVS6hoFkdAwBZvEl3QlnV9lChoBmgJaA9DCOD1mbN+/HFAlIaUUpRoFUuxaBZHQMAWfXXiBGx1fZQoaAZoCWgPQwiPi2oR0XlzQJSGlFKUaBVLxWgWR0DAFoA9ovi+dX2UKGgGaAloD0MIG5yIfi2XckCUhpRSlGgVS6RoFkdAwBaAvOhTO3V9lChoBmgJaA9DCEJcOXtnL3JAlIaUUpRoFUukaBZHQMAWh0Xxe9l1fZQoaAZoCWgPQwireCPziDFzQJSGlFKUaBVLs2gWR0DAFohdKNADdX2UKGgGaAloD0MIDaoNTkQkckCUhpRSlGgVS8NoFkdAwBaKTlkpZ3V9lChoBmgJaA9DCLFSQUVVrXNAlIaUUpRoFUuwaBZHQMAWk3d0q6R1fZQoaAZoCWgPQwh5P26/fLNzQJSGlFKUaBVLz2gWR0DAFpR3iaRZdX2UKGgGaAloD0MIwF32686VcUCUhpRSlGgVS7JoFkdAwBafYnv2G3V9lChoBmgJaA9DCM2v5gCBFXRAlIaUUpRoFUutaBZHQMAWoMA/9pB1fZQoaAZoCWgPQwgyVpv/l9twQJSGlFKUaBVLoWgWR0DAFqYumJm/dX2UKGgGaAloD0MIY0FhUGYLc0CUhpRSlGgVS7VoFkdAwBauWBSUDHV9lChoBmgJaA9DCLoxPWEJaHFAlIaUUpRoFUufaBZHQMAWsBWgezV1fZQoaAZoCWgPQwiWJM/1fZtxQJSGlFKUaBVLsmgWR0DAFr9Z7ojfdX2UKGgGaAloD0MIGTkLe5rdcUCUhpRSlGgVS8NoFkdAwBa/uk1uSHV9lChoBmgJaA9DCNrFNNO9oXJAlIaUUpRoFUufaBZHQMAWxIhyKel1fZQoaAZoCWgPQwiPjUC8rnVCQJSGlFKUaBVLUmgWR0DAFsVjd56ddX2UKGgGaAloD0MIgPPixBeKcUCUhpRSlGgVS5poFkdAwBbLTG5tnHV9lChoBmgJaA9DCCszpfW3MW9AlIaUUpRoFUu5aBZHQMAW0mDL8rJ1fZQoaAZoCWgPQwiITPkQlEZwQJSGlFKUaBVLuGgWR0DAFtJUgjhUdX2UKGgGaAloD0MI5X6HooBWcUCUhpRSlGgVS61oFkdAwBbWUqQRw3V9lChoBmgJaA9DCOGYZU+CmW9AlIaUUpRoFUuoaBZHQMAW6qmj0th1fZQoaAZoCWgPQwhWSPlJ9cBxQJSGlFKUaBVLzGgWR0DAFu8L0BfbdX2UKGgGaAloD0MIMh6lEh6xcUCUhpRSlGgVS85oFkdAwBbxD63y7XV9lChoBmgJaA9DCEKVmj2QJnJAlIaUUpRoFUvvaBZHQMAW89yDIzZ1fZQoaAZoCWgPQwjKayV0F+VxQJSGlFKUaBVLn2gWR0DAFvcgGKQ8dX2UKGgGaAloD0MIc2a7Qh8IRUCUhpRSlGgVS1doFkdAwBb7XLeQ+3V9lChoBmgJaA9DCEt2bASiuHBAlIaUUpRoFUvFaBZHQMAXAC8vmHR1fZQoaAZoCWgPQwjv/nivGg5zQJSGlFKUaBVLm2gWR0DAFwcn9ehPdX2UKGgGaAloD0MIiXjr/BtfckCUhpRSlGgVS9BoFkdAwBcPcC5mRXV9lChoBmgJaA9DCILix5i7JXBAlIaUUpRoFUuiaBZHQMAXD3Mpw0h1fZQoaAZoCWgPQwiaQ1IL5V9wQJSGlFKUaBVLpGgWR0DAFxdXcQAddX2UKGgGaAloD0MITDWzlkK/c0CUhpRSlGgVS75oFkdAwBcXQw9JSXV9lChoBmgJaA9DCHO7l/ukHnJAlIaUUpRoFUu+aBZHQMAXHQDV6NV1fZQoaAZoCWgPQwgSpb3BF2pxQJSGlFKUaBVLpmgWR0DAFx+Q0XP7dWUu"
75
+ },
76
+ "ep_success_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
79
+ },
80
+ "_n_updates": 2568,
81
+ "n_steps": 2048,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 12,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWV6QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxdL3NzZF9zY3JhdGNoL21pbmljb25kYTMvZW52cy9kbC9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
92
+ },
93
+ "clip_range_vf": null,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6ca2e9fdc7e63b0fc4964d9a4e122fdaf6c72c8f3a137e8a98f04a269cd4afa
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f3414f3d325d27e992527ec23582ba7a2c4e42137843decf1b60b69a0e22c21
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-70-generic-x86_64-with-debian-buster-sid #78~18.04.1-Ubuntu SMP Sat Mar 20 14:10:07 UTC 2021
2
+ Python: 3.6.15
3
+ Stable-Baselines3: 1.3.0
4
+ PyTorch: 1.10.2+cu102
5
+ GPU Enabled: True
6
+ Numpy: 1.19.5
7
+ Gym: 0.19.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dc4b8ba7642360fd3127f8416884eb4e8dc77eed439e0ba0edeae8026febd7f
3
+ size 266943
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 300.1678661490506, "std_reward": 14.49386584875156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T21:24:50.359175"}