File size: 3,115 Bytes
21a3c95 c4b4993 21a3c95 160ad69 c4b4993 160ad69 c4b4993 160ad69 c4b4993 160ad69 21a3c95 160ad69 21a3c95 ec2845c 21a3c95 e98ed37 086dad7 21a3c95 74b5f7d 21a3c95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8553054662379421
- name: Precision
type: precision
value: 0.8675973805921082
- name: Recall
type: recall
value: 0.8553054662379421
- name: F1
type: f1
value: 0.8581712564304036
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2816
- Accuracy: 0.8553
- Precision: 0.8676
- Recall: 0.8553
- F1: 0.8582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5793 | 1.0 | 22 | 0.5874 | 0.6785 | 0.4603 | 0.6785 | 0.5485 |
| 0.3711 | 2.0 | 44 | 0.4135 | 0.7781 | 0.8169 | 0.7781 | 0.7395 |
| 0.2961 | 3.0 | 66 | 0.2816 | 0.8553 | 0.8676 | 0.8553 | 0.8582 |
| 0.2576 | 4.0 | 88 | 0.2899 | 0.7942 | 0.7884 | 0.7942 | 0.7857 |
| 0.261 | 5.0 | 110 | 0.2469 | 0.8103 | 0.8057 | 0.8103 | 0.8037 |
| 0.2559 | 6.0 | 132 | 0.2548 | 0.8360 | 0.8632 | 0.8360 | 0.8179 |
| 0.2249 | 7.0 | 154 | 0.2835 | 0.8135 | 0.8479 | 0.8135 | 0.7882 |
| 0.2242 | 8.0 | 176 | 0.2335 | 0.8296 | 0.8261 | 0.8296 | 0.8262 |
| 0.2215 | 9.0 | 198 | 0.2293 | 0.8521 | 0.8549 | 0.8521 | 0.8532 |
| 0.2269 | 10.0 | 220 | 0.2213 | 0.8424 | 0.8396 | 0.8424 | 0.8393 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|