--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8327974276527331 - name: Precision type: precision value: 0.860997154156041 - name: Recall type: recall value: 0.8327974276527331 - name: F1 type: f1 value: 0.8137864007121186 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3277 - Accuracy: 0.8328 - Precision: 0.8610 - Recall: 0.8328 - F1: 0.8138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5603 | 1.0 | 22 | 0.5610 | 0.6817 | 0.7833 | 0.6817 | 0.5559 | | 0.3934 | 2.0 | 44 | 0.3976 | 0.7910 | 0.7879 | 0.7910 | 0.7768 | | 0.2992 | 3.0 | 66 | 0.3036 | 0.8071 | 0.8044 | 0.8071 | 0.7965 | | 0.2746 | 4.0 | 88 | 0.3538 | 0.7878 | 0.7812 | 0.7878 | 0.7799 | | 0.2573 | 5.0 | 110 | 0.2242 | 0.8521 | 0.8561 | 0.8521 | 0.8535 | | 0.2724 | 6.0 | 132 | 0.3801 | 0.7749 | 0.8145 | 0.7749 | 0.7347 | | 0.2344 | 7.0 | 154 | 0.3327 | 0.8232 | 0.8544 | 0.8232 | 0.8011 | | 0.2225 | 8.0 | 176 | 0.3736 | 0.8392 | 0.8655 | 0.8392 | 0.8221 | | 0.225 | 9.0 | 198 | 0.3479 | 0.8328 | 0.8610 | 0.8328 | 0.8138 | | 0.2308 | 10.0 | 220 | 0.3277 | 0.8328 | 0.8610 | 0.8328 | 0.8138 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1