--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9714285714285714 - name: Precision type: precision value: 0.9696825396825397 - name: Recall type: recall value: 0.9714285714285714 - name: F1 type: f1 value: 0.9695078031212484 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0814 - Accuracy: 0.9714 - Precision: 0.9697 - Recall: 0.9714 - F1: 0.9695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2262 | 0.9888 | 22 | 0.2061 | 0.9365 | 0.8770 | 0.9365 | 0.9058 | | 0.1666 | 1.9775 | 44 | 0.1274 | 0.9333 | 0.8769 | 0.9333 | 0.9042 | | 0.1168 | 2.9663 | 66 | 0.1054 | 0.9524 | 0.9461 | 0.9524 | 0.9438 | | 0.0984 | 4.0 | 89 | 0.0824 | 0.9619 | 0.9591 | 0.9619 | 0.9599 | | 0.1028 | 4.9888 | 111 | 0.0814 | 0.9714 | 0.9697 | 0.9714 | 0.9695 | | 0.1082 | 5.9775 | 133 | 0.0835 | 0.9492 | 0.9518 | 0.9492 | 0.9329 | | 0.0962 | 6.9663 | 155 | 0.0872 | 0.9587 | 0.9578 | 0.9587 | 0.9582 | | 0.0799 | 8.0 | 178 | 0.0803 | 0.9587 | 0.9543 | 0.9587 | 0.9546 | | 0.0954 | 8.9888 | 200 | 0.0685 | 0.9619 | 0.9584 | 0.9619 | 0.9587 | | 0.0771 | 9.8876 | 220 | 0.0711 | 0.9619 | 0.9584 | 0.9619 | 0.9587 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1