--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8842443729903537 - name: Precision type: precision value: 0.8965561746996403 - name: Recall type: recall value: 0.8842443729903537 - name: F1 type: f1 value: 0.8866264991906878 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2001 - Accuracy: 0.8842 - Precision: 0.8966 - Recall: 0.8842 - F1: 0.8866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2604 | 1.0 | 22 | 0.2334 | 0.8392 | 0.8375 | 0.8392 | 0.8333 | | 0.2492 | 2.0 | 44 | 0.2621 | 0.8264 | 0.8229 | 0.8264 | 0.8232 | | 0.2373 | 3.0 | 66 | 0.2334 | 0.8617 | 0.8639 | 0.8617 | 0.8626 | | 0.2623 | 4.0 | 88 | 0.2036 | 0.8810 | 0.8908 | 0.8810 | 0.8832 | | 0.2378 | 5.0 | 110 | 0.2944 | 0.8199 | 0.8165 | 0.8199 | 0.8173 | | 0.221 | 6.0 | 132 | 0.2027 | 0.8682 | 0.8752 | 0.8682 | 0.8701 | | 0.2339 | 7.0 | 154 | 0.2291 | 0.8585 | 0.8573 | 0.8585 | 0.8577 | | 0.2215 | 8.0 | 176 | 0.2732 | 0.8682 | 0.8685 | 0.8682 | 0.8683 | | 0.2162 | 9.0 | 198 | 0.2260 | 0.8682 | 0.8713 | 0.8682 | 0.8693 | | 0.2226 | 10.0 | 220 | 0.2001 | 0.8842 | 0.8966 | 0.8842 | 0.8866 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1