--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - summarization - generated_from_trainer model-index: - name: TinyLlama-1.1B-Sum-SFT results: [] datasets: - martimfasantos/openai-summarize-tldr pipeline_tag: summarization --- # TinyLlama-1.1B-Sum-SFT This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the martimfasantos/openai-summarize-tldr dataset. It achieves the following results on the evaluation set: - Loss: 1.8887 - Nll Loss: 1.8968 - Logps/best: -71.1814 - Rewards/chosen: 2.2080 - Rewards/rejected: -0.6886 - Rewards/accuracies: 1.0 - Rewards/margins: 2.8966 - Logps/rejected: -14.2972 - Logps/chosen: -71.1814 - Logits/rejected: -3.0553 - Logits/chosen: -3.4224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Nll Loss | Logps/best | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.9469 | 0.2193 | 800 | 1.9582 | 1.9648 | -73.7246 | 1.9537 | -0.4240 | 1.0 | 2.3777 | -11.6512 | -73.7246 | -2.7987 | -3.1275 | | 1.9813 | 0.4386 | 1600 | 1.9285 | 1.9369 | -72.6769 | 2.0585 | -0.5023 | 1.0 | 2.5607 | -12.4339 | -72.6769 | -2.9393 | -3.2910 | | 1.9215 | 0.6579 | 2400 | 1.9049 | 1.9127 | -71.7733 | 2.1488 | -0.5719 | 1.0 | 2.7207 | -13.1300 | -71.7733 | -3.0198 | -3.3812 | | 1.8655 | 0.8772 | 3200 | 1.8887 | 1.8968 | -71.1814 | 2.2080 | -0.6886 | 1.0 | 2.8966 | -14.2972 | -71.1814 | -3.0553 | -3.4224 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1