Update handler.py
Browse files- handler.py +3 -3
handler.py
CHANGED
@@ -58,7 +58,7 @@ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
58 |
# response = postprocess(model_outputs)
|
59 |
# return response
|
60 |
|
61 |
-
class
|
62 |
def __init__(self ):
|
63 |
# Load processor and model
|
64 |
self.PROCESSOR = AutoProcessor.from_pretrained(
|
@@ -102,7 +102,7 @@ class PreTrainedPipeline():
|
|
102 |
return {"generated_text": generated_text}
|
103 |
# return {"text":prediction[0]}
|
104 |
|
105 |
-
@classmethod
|
106 |
def convert_to_rgb(self, image):
|
107 |
if image.mode == "RGB":
|
108 |
return image
|
@@ -111,7 +111,7 @@ class PreTrainedPipeline():
|
|
111 |
alpha_composite = Image.alpha_composite(background, image_rgba)
|
112 |
alpha_composite = alpha_composite.convert("RGB")
|
113 |
return alpha_composite
|
114 |
-
@classmethod
|
115 |
def custom_transform(self, x):
|
116 |
x = self.convert_to_rgb(x)
|
117 |
x = to_numpy_array(x)
|
|
|
58 |
# response = postprocess(model_outputs)
|
59 |
# return response
|
60 |
|
61 |
+
class EndpointHandler():
|
62 |
def __init__(self ):
|
63 |
# Load processor and model
|
64 |
self.PROCESSOR = AutoProcessor.from_pretrained(
|
|
|
102 |
return {"generated_text": generated_text}
|
103 |
# return {"text":prediction[0]}
|
104 |
|
105 |
+
# @classmethod
|
106 |
def convert_to_rgb(self, image):
|
107 |
if image.mode == "RGB":
|
108 |
return image
|
|
|
111 |
alpha_composite = Image.alpha_composite(background, image_rgba)
|
112 |
alpha_composite = alpha_composite.convert("RGB")
|
113 |
return alpha_composite
|
114 |
+
# @classmethod
|
115 |
def custom_transform(self, x):
|
116 |
x = self.convert_to_rgb(x)
|
117 |
x = to_numpy_array(x)
|