marutitecblic
commited on
Upload custom_image_to_text_pipeline.py
Browse files- custom_image_to_text_pipeline.py +127 -0
custom_image_to_text_pipeline.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
4 |
+
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
5 |
+
from transformers.image_transforms import resize, to_channel_dimension_format
|
6 |
+
import os
|
7 |
+
from typing import Dict, List, Any
|
8 |
+
|
9 |
+
# Constants
|
10 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
# HF_TASK = os.getenv('HF_TASK')
|
13 |
+
|
14 |
+
# API_TOKEN = os.getenv('API_TOKEN') # Ensure you replace this with your actual API token
|
15 |
+
|
16 |
+
# # Load processor and model
|
17 |
+
# PROCESSOR = AutoProcessor.from_pretrained(
|
18 |
+
# "marutitecblic/HtmlTocode",
|
19 |
+
# trust_remote_code=True,
|
20 |
+
# # token=API_TOKEN,
|
21 |
+
# )
|
22 |
+
# MODEL = AutoModelForCausalLM.from_pretrained(
|
23 |
+
# "marutitecblic/HtmlTocode",
|
24 |
+
# # token=API_TOKEN,
|
25 |
+
# trust_remote_code=True,
|
26 |
+
# torch_dtype=torch.bfloat16,
|
27 |
+
# ).to(DEVICE)
|
28 |
+
|
29 |
+
# image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
|
30 |
+
# BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
31 |
+
# BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
# def preprocess(event):
|
36 |
+
# image = Image.open(event["file"]).convert("RGB")
|
37 |
+
# inputs = PROCESSOR.tokenizer(
|
38 |
+
# f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
|
39 |
+
# return_tensors="pt",
|
40 |
+
# add_special_tokens=False,
|
41 |
+
# )
|
42 |
+
# inputs["pixel_values"] = PROCESSOR.image_processor([image], transform=custom_transform)
|
43 |
+
# inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
44 |
+
# return inputs
|
45 |
+
|
46 |
+
# def inference(model_inputs):
|
47 |
+
# inputs = preprocess(model_inputs)
|
48 |
+
# generated_ids = MODEL.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_length=4096)
|
49 |
+
# generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
50 |
+
# return {"generated_text": generated_text}
|
51 |
+
|
52 |
+
# def postprocess(model_outputs):
|
53 |
+
# return model_outputs
|
54 |
+
|
55 |
+
# def handle(event, context):
|
56 |
+
# model_inputs = event
|
57 |
+
# model_outputs = inference(model_inputs)
|
58 |
+
# response = postprocess(model_outputs)
|
59 |
+
# return response
|
60 |
+
|
61 |
+
class ImageToTextPipeline:
|
62 |
+
def __init__(self,model_path:str):
|
63 |
+
# Load processor and model
|
64 |
+
self.PROCESSOR = AutoProcessor.from_pretrained(
|
65 |
+
model_path,
|
66 |
+
trust_remote_code=True,
|
67 |
+
# token=API_TOKEN,
|
68 |
+
)
|
69 |
+
self.MODEL = AutoModelForCausalLM.from_pretrained(
|
70 |
+
model_path,
|
71 |
+
# token=API_TOKEN,
|
72 |
+
trust_remote_code=True,
|
73 |
+
torch_dtype=torch.bfloat16,
|
74 |
+
).to(DEVICE)
|
75 |
+
self.image_seq_len = self.MODEL.config.perceiver_config.resampler_n_latents
|
76 |
+
self.BOS_TOKEN = self.PROCESSOR.tokenizer.bos_token
|
77 |
+
self.BAD_WORDS_IDS = self.PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
78 |
+
|
79 |
+
|
80 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
81 |
+
# image = data.pop("inputs", data)
|
82 |
+
|
83 |
+
# # process image
|
84 |
+
# pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
|
85 |
+
|
86 |
+
# # run prediction
|
87 |
+
# generated_ids = self.model.generate(pixel_values)
|
88 |
+
|
89 |
+
# # decode output
|
90 |
+
# prediction = generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
91 |
+
image = Image.open(data["file"]).convert("RGB")
|
92 |
+
inputs = self.PROCESSOR.tokenizer(
|
93 |
+
f"{self.BOS_TOKEN}<fake_token_around_image>{'<image>' * self.image_seq_len}<fake_token_around_image>",
|
94 |
+
return_tensors="pt",
|
95 |
+
add_special_tokens=False,
|
96 |
+
)
|
97 |
+
inputs["pixel_values"] = self.PROCESSOR.image_processor([image], transform=self.custom_transform)
|
98 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
99 |
+
# inputs = preprocess(model_inputs)
|
100 |
+
generated_ids = self.MODEL.generate(**inputs, bad_words_ids=self.BAD_WORDS_IDS, max_length=4096)
|
101 |
+
generated_text = self.PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
102 |
+
return {"text": generated_text}
|
103 |
+
# return {"text":prediction[0]}
|
104 |
+
|
105 |
+
# @classmethod
|
106 |
+
def convert_to_rgb(self, image):
|
107 |
+
if image.mode == "RGB":
|
108 |
+
return image
|
109 |
+
image_rgba = image.convert("RGBA")
|
110 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
111 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
112 |
+
alpha_composite = alpha_composite.convert("RGB")
|
113 |
+
return alpha_composite
|
114 |
+
# @classmethod
|
115 |
+
def custom_transform(self, x):
|
116 |
+
x = self.convert_to_rgb(x)
|
117 |
+
x = to_numpy_array(x)
|
118 |
+
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
|
119 |
+
x = self.PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
120 |
+
x = self.PROCESSOR.image_processor.normalize(
|
121 |
+
x,
|
122 |
+
mean=self.PROCESSOR.image_processor.image_mean,
|
123 |
+
std=self.PROCESSOR.image_processor.image_std
|
124 |
+
)
|
125 |
+
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
126 |
+
x = torch.tensor(x)
|
127 |
+
return x
|