maryann-gitonga
commited on
Commit
·
e2e0e81
1
Parent(s):
9ad4976
Upload 3D_Brain_Tumor_Segmentation_Attention_UNet.ipynb
Browse files
3D_Brain_Tumor_Segmentation_Attention_UNet.ipynb
ADDED
@@ -0,0 +1,1105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "TdEse3Kwq3JD"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Import Necessary Libraries"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {
|
16 |
+
"id": "WRKzuv_5owuz"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import numpy as np\n",
|
21 |
+
"import nibabel as nib\n",
|
22 |
+
"import glob\n",
|
23 |
+
"from tensorflow.keras.utils import to_categorical # multiclass semantic segmentation, therefore the volumes to categorical\n",
|
24 |
+
"import matplotlib.pyplot as plt\n",
|
25 |
+
"from tifffile import imsave\n",
|
26 |
+
"from sklearn.preprocessing import MinMaxScaler #scale values\n",
|
27 |
+
"import tensorflow as tf\n",
|
28 |
+
"import random\n",
|
29 |
+
"import os.path\n",
|
30 |
+
"!pip install split-folders\n",
|
31 |
+
"!pip3 install -U segmentation-models-3D\n",
|
32 |
+
"import splitfolders\n",
|
33 |
+
"!pip install -q -U keras-tuner"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"metadata": {
|
40 |
+
"id": "vEtRg2vutWru"
|
41 |
+
},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"# To always ensure that the GPU is available\n",
|
45 |
+
"import tensorflow as tf\n",
|
46 |
+
"device_name = tf.test.gpu_device_name()\n",
|
47 |
+
"if device_name != '/device:GPU:0':\n",
|
48 |
+
" raise SystemError('GPU device not found')\n",
|
49 |
+
"print('Found GPU at: {}'.format(device_name))"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "markdown",
|
54 |
+
"metadata": {
|
55 |
+
"id": "L5yBxROtvDAI"
|
56 |
+
},
|
57 |
+
"source": [
|
58 |
+
"# Define the MinMax Scaler + Mount Drive to access Dataset\n",
|
59 |
+
"\n",
|
60 |
+
"* The MinMax scaler is necessary for transforming the scans' features to a range between 0 and 1"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"metadata": {
|
67 |
+
"id": "sqMRiba8q-30"
|
68 |
+
},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
+
"scaler = MinMaxScaler()\n",
|
72 |
+
"\n",
|
73 |
+
"from google.colab import drive\n",
|
74 |
+
"drive.mount('/content/drive')"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "markdown",
|
79 |
+
"metadata": {
|
80 |
+
"id": "XH4_Z5f2sfxZ"
|
81 |
+
},
|
82 |
+
"source": [
|
83 |
+
"# Load sample images and visualize\n",
|
84 |
+
"\n"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": null,
|
90 |
+
"metadata": {
|
91 |
+
"id": "SvfI9iTrrZuN"
|
92 |
+
},
|
93 |
+
"outputs": [],
|
94 |
+
"source": [
|
95 |
+
"DATASET_PATH = ''\n",
|
96 |
+
"\n",
|
97 |
+
"test_image_flair = nib.load(DATASET_PATH + 'flair.nii').get_fdata()\n",
|
98 |
+
"print(test_image_flair[156][98][78])\n",
|
99 |
+
"test_image_flair = scaler.fit_transform(test_image_flair.reshape(-1, test_image_flair.shape[-1])).reshape(test_image_flair.shape)\n",
|
100 |
+
"print(test_image_flair[156][98][78])\n",
|
101 |
+
"\n",
|
102 |
+
"test_image_t1 = nib.load(DATASET_PATH + 't1.nii').get_fdata()\n",
|
103 |
+
"test_image_t1 = scaler.fit_transform(test_image_t1.reshape(-1, test_image_t1.shape[-1])).reshape(test_image_t1.shape)\n",
|
104 |
+
"\n",
|
105 |
+
"test_image_t1ce = nib.load(DATASET_PATH + 't1ce.nii').get_fdata()\n",
|
106 |
+
"test_image_t1ce = scaler.fit_transform(test_image_t1ce.reshape(-1, test_image_t1ce.shape[-1])).reshape(test_image_t1ce.shape)\n",
|
107 |
+
"\n",
|
108 |
+
"test_image_t2 = nib.load(DATASET_PATH + 't2.nii').get_fdata()\n",
|
109 |
+
"test_image_t2 = scaler.fit_transform(test_image_t2.reshape(-1, test_image_t2.shape[-1])).reshape(test_image_t2.shape)\n",
|
110 |
+
"\n",
|
111 |
+
"test_mask = nib.load(DATASET_PATH + 'seg.nii').get_fdata()\n",
|
112 |
+
"test_mask = test_mask.astype(np.uint8)\n",
|
113 |
+
"\n",
|
114 |
+
"print(np.unique(test_mask))\n",
|
115 |
+
"# Reassign label value 4 to 3\n",
|
116 |
+
"test_mask[test_mask==4] = 3\n",
|
117 |
+
"print(np.unique(test_mask))"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": null,
|
123 |
+
"metadata": {
|
124 |
+
"id": "aTkjA-mgwecE"
|
125 |
+
},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"n_slice = random.randint(0, test_mask.shape[2])\n",
|
129 |
+
"\n",
|
130 |
+
"plt.figure(figsize=(12,8))\n",
|
131 |
+
"plt.subplot(231)\n",
|
132 |
+
"plt.imshow(test_image_flair[:, :, n_slice], cmap='gray')\n",
|
133 |
+
"plt.title('Flair Scan')\n",
|
134 |
+
"\n",
|
135 |
+
"plt.subplot(232)\n",
|
136 |
+
"plt.imshow(test_image_t1[:, :, n_slice], cmap='gray')\n",
|
137 |
+
"plt.title('T1 Scan')\n",
|
138 |
+
"\n",
|
139 |
+
"plt.subplot(233)\n",
|
140 |
+
"plt.imshow(test_image_t1ce[:, :, n_slice], cmap='gray')\n",
|
141 |
+
"plt.title('T1ce Scan')\n",
|
142 |
+
"\n",
|
143 |
+
"plt.subplot(234)\n",
|
144 |
+
"plt.imshow(test_image_t2[:, :, n_slice], cmap='gray')\n",
|
145 |
+
"plt.title('T2 Scan')\n",
|
146 |
+
"\n",
|
147 |
+
"plt.subplot(235)\n",
|
148 |
+
"plt.imshow(test_mask[:, :, n_slice])\n",
|
149 |
+
"plt.title('Mask')\n",
|
150 |
+
"\n",
|
151 |
+
"plt.show()\n",
|
152 |
+
"\n"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "markdown",
|
157 |
+
"metadata": {
|
158 |
+
"id": "EORoZoj7yPfW"
|
159 |
+
},
|
160 |
+
"source": [
|
161 |
+
"# Data Processing: Combining the volumes of scans to one + Cropping the scans and masks\n",
|
162 |
+
"\n",
|
163 |
+
"* The numpy array is reshaped to 2D, the dimensions the scaler can take as input, the array is transformed and then reshaped back to 3D\n",
|
164 |
+
"* Result: the feature at position [156][98][78] of the loaded FLAIR scan numpy array is transformed from 1920.0 to 0.7683...\n",
|
165 |
+
"* The three scans to be used are stacked together to forme a combined scan.\n",
|
166 |
+
"* Result: A FLAIR scan, a T1CE scan and a T2 scan, all of dimensions 255 x 255 x 155 are stacked to form a combined scan of dimensions 255 x 255 x 155 x 3\n",
|
167 |
+
"* The combined scan is cropped to 128 x 128 x 128 x 3\n",
|
168 |
+
"* Label 4 in the dataset is reassigned to label 3 resulting to a continuous list of labels: 0, 1, 2, 3"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": null,
|
174 |
+
"metadata": {
|
175 |
+
"id": "-3u91yIqybn-"
|
176 |
+
},
|
177 |
+
"outputs": [],
|
178 |
+
"source": [
|
179 |
+
"combined_x = np.stack([test_image_flair, test_image_t1ce, test_image_t2], axis=3)\n",
|
180 |
+
"combined_x = combined_x[56:184, 56:184, 13:141] #crop to 128 x 128 x 128 X 3\n",
|
181 |
+
"\n",
|
182 |
+
"test_mask = test_mask[56:184, 56:184, 13:141]\n",
|
183 |
+
"n_slice = random.randint(0, test_mask.shape[1])\n",
|
184 |
+
"plt.figure(figsize=(12, 8))\n",
|
185 |
+
"\n",
|
186 |
+
"plt.subplot(231)\n",
|
187 |
+
"plt.imshow(combined_x[:, :, n_slice, 0], cmap='gray')\n",
|
188 |
+
"plt.title('Flair Scan')\n",
|
189 |
+
"\n",
|
190 |
+
"plt.subplot(232)\n",
|
191 |
+
"plt.imshow(combined_x[:, :, n_slice, 1], cmap='gray')\n",
|
192 |
+
"plt.title('T1ce Scan')\n",
|
193 |
+
"\n",
|
194 |
+
"plt.subplot(233)\n",
|
195 |
+
"plt.imshow(combined_x[:, :, n_slice, 2], cmap='gray')\n",
|
196 |
+
"plt.title('T2 Scan')\n",
|
197 |
+
"\n",
|
198 |
+
"plt.subplot(234)\n",
|
199 |
+
"plt.imshow(test_mask[:, :, n_slice])\n",
|
200 |
+
"plt.title('Mask')\n",
|
201 |
+
"\n",
|
202 |
+
"plt.show()"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": null,
|
208 |
+
"metadata": {
|
209 |
+
"id": "T8r7sy4QND41"
|
210 |
+
},
|
211 |
+
"outputs": [],
|
212 |
+
"source": [
|
213 |
+
"from tensorflow.keras import backend as K\n",
|
214 |
+
"\n",
|
215 |
+
"print(K.int_shape(test_image_flair))\n",
|
216 |
+
"\n",
|
217 |
+
"print(K.int_shape(combined_x))"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": null,
|
223 |
+
"metadata": {
|
224 |
+
"id": "WeD_PqCv6Vww"
|
225 |
+
},
|
226 |
+
"outputs": [],
|
227 |
+
"source": [
|
228 |
+
"flair_list = sorted(glob.glob(DATASET_PATH + '*/flair.nii'))\n",
|
229 |
+
"t1_list = sorted(glob.glob(DATASET_PATH + '*/t1.nii'))\n",
|
230 |
+
"t1ce_list = sorted(glob.glob(DATASET_PATH + '*/t1ce.nii'))\n",
|
231 |
+
"t2_list = sorted(glob.glob(DATASET_PATH + '*/t2.nii'))\n",
|
232 |
+
"mask_list = sorted(glob.glob(DATASET_PATH + '*/seg.nii'))\n",
|
233 |
+
"\n",
|
234 |
+
"\n",
|
235 |
+
"for img in range(len(flair_list)):\n",
|
236 |
+
" print('Now processing image and masks no: ', img)\n",
|
237 |
+
"\n",
|
238 |
+
" temp_image_flair = nib.load(flair_list[img]).get_fdata()\n",
|
239 |
+
" temp_image_flair = scaler.fit_transform(temp_image_flair.reshape(-1, temp_image_flair.shape[-1])).reshape(temp_image_flair.shape)\n",
|
240 |
+
"\n",
|
241 |
+
" temp_image_t1 = nib.load(t1_list[img]).get_fdata()\n",
|
242 |
+
" temp_image_t1 = scaler.fit_transform(temp_image_t1.reshape(-1, temp_image_t1.shape[-1])).reshape(temp_image_t1.shape)\n",
|
243 |
+
"\n",
|
244 |
+
" temp_image_t1ce = nib.load(t1ce_list[img]).get_fdata()\n",
|
245 |
+
" temp_image_t1ce = scaler.fit_transform(temp_image_t1ce.reshape(-1, temp_image_t1ce.shape[-1])).reshape(temp_image_t1ce.shape)\n",
|
246 |
+
"\n",
|
247 |
+
" temp_image_t2 = nib.load(t2_list[img]).get_fdata()\n",
|
248 |
+
" temp_image_t2 = scaler.fit_transform(temp_image_t2.reshape(-1, temp_image_t2.shape[-1])).reshape(temp_image_t2.shape)\n",
|
249 |
+
"\n",
|
250 |
+
" temp_mask = nib.load(mask_list[img]).get_fdata()\n",
|
251 |
+
" temp_mask = temp_mask.astype(np.uint8)\n",
|
252 |
+
" temp_mask[temp_mask == 4] = 3\n",
|
253 |
+
"\n",
|
254 |
+
" temp_combined_images = np.stack([temp_image_flair, temp_image_t1, temp_image_t1ce, temp_image_t2], axis = 3)\n",
|
255 |
+
" temp_combined_images = temp_combined_images[56:184, 56:184, 13:141]\n",
|
256 |
+
" temp_mask = temp_mask[56:184, 56:184, 13:141]\n",
|
257 |
+
"\n",
|
258 |
+
" val, counts = np.unique(temp_mask, return_counts=True)\n",
|
259 |
+
"\n",
|
260 |
+
" if(1 - (counts[0]/counts.sum())) > 0.01:\n",
|
261 |
+
" temp_mask = to_categorical(temp_mask, num_classes=4)\n",
|
262 |
+
" np.save(DATASET_PATH + 'final_dataset/scans/image_' + str(img) + '.npy', temp_combined_images)\n",
|
263 |
+
" np.save(DATASET_PATH + 'final_dataset/masks/image_' + str(img) + '.npy', temp_mask)\n",
|
264 |
+
" print(\"Saved\")\n",
|
265 |
+
" else:\n",
|
266 |
+
" print(\"Not saved\")"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "markdown",
|
271 |
+
"metadata": {
|
272 |
+
"id": "-wICUx56ugDz"
|
273 |
+
},
|
274 |
+
"source": [
|
275 |
+
"# Dataset Splitting: 60:20:20 for train, val and test"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": null,
|
281 |
+
"metadata": {
|
282 |
+
"id": "Oi_g5D01HSnq"
|
283 |
+
},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"input_folder = DATASET_PATH + 'final_dataset/'\n",
|
287 |
+
"output_folder = DATASET_PATH + 'split_dataset/'\n",
|
288 |
+
"splitfolders.ratio(input_folder, output=output_folder, seed=42, ratio=(.6, .2, .2), group_prefix=None)"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "markdown",
|
293 |
+
"metadata": {
|
294 |
+
"id": "RtaRf0B4kPkM"
|
295 |
+
},
|
296 |
+
"source": [
|
297 |
+
"# Data Generator\n",
|
298 |
+
"\n",
|
299 |
+
"\n"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": null,
|
305 |
+
"metadata": {
|
306 |
+
"id": "UMfHysy2ixc8"
|
307 |
+
},
|
308 |
+
"outputs": [],
|
309 |
+
"source": [
|
310 |
+
"import os\n",
|
311 |
+
"import numpy as np\n",
|
312 |
+
"\n",
|
313 |
+
"def load_img(img_dir, img_list):\n",
|
314 |
+
" images=[]\n",
|
315 |
+
" for i, image_name in enumerate(img_list):\n",
|
316 |
+
" if(image_name.split('.')[1] == 'npy'):\n",
|
317 |
+
" image = np.load(img_dir + image_name)\n",
|
318 |
+
" images.append(image)\n",
|
319 |
+
" images = np.array(images)\n",
|
320 |
+
" return images\n",
|
321 |
+
"\n",
|
322 |
+
"def imageLoader(img_dir, img_list, mask_dir, mask_list, batch_size):\n",
|
323 |
+
" L = len(img_list)\n",
|
324 |
+
" # keras needs the generator infinite, so use while True\n",
|
325 |
+
" while True:\n",
|
326 |
+
" batch_start = 0\n",
|
327 |
+
" batch_end = batch_size\n",
|
328 |
+
"\n",
|
329 |
+
" while batch_start < L:\n",
|
330 |
+
" limit = min(batch_end, L)\n",
|
331 |
+
" X = load_img(img_dir, img_list[batch_start:limit])\n",
|
332 |
+
" Y = load_img(mask_dir, mask_list[batch_start:limit])\n",
|
333 |
+
"\n",
|
334 |
+
" yield(X, Y) # a tuple with two numpy arrays with batch_size samples\n",
|
335 |
+
"\n",
|
336 |
+
" batch_start += batch_size\n",
|
337 |
+
" batch_end += batch_size\n",
|
338 |
+
"\n",
|
339 |
+
"\n",
|
340 |
+
"# Test the generator\n",
|
341 |
+
"TRAIN_DATASET_PATH = ''\n",
|
342 |
+
"train_img_dir = TRAIN_DATASET_PATH + 'scans/'\n",
|
343 |
+
"train_mask_dir = TRAIN_DATASET_PATH + 'masks/'\n",
|
344 |
+
"\n",
|
345 |
+
"train_img_list = os.listdir(train_img_dir)\n",
|
346 |
+
"train_mask_list = os.listdir(train_mask_dir)\n",
|
347 |
+
"\n",
|
348 |
+
"batch_size = 2\n",
|
349 |
+
"\n",
|
350 |
+
"train_img_datagen = imageLoader(train_img_dir, train_img_list,\n",
|
351 |
+
" train_mask_dir, train_mask_list, batch_size)\n",
|
352 |
+
"\n",
|
353 |
+
"# Verify generator - In python 3 next() is renamed as __next__()\n",
|
354 |
+
"img, msk = train_img_datagen.__next__()\n",
|
355 |
+
"\n",
|
356 |
+
"img_num = random.randint(0, img.shape[0]-1)\n",
|
357 |
+
"\n",
|
358 |
+
"test_img = img[img_num]\n",
|
359 |
+
"test_mask = msk[img_num]\n",
|
360 |
+
"test_mask = np.argmax(test_mask, axis=3)\n",
|
361 |
+
"\n",
|
362 |
+
"n_slice = random.randint(0, test_mask.shape[2])\n",
|
363 |
+
"plt.figure(figsize=(12,8))\n",
|
364 |
+
"\n",
|
365 |
+
"plt.subplot(221)\n",
|
366 |
+
"plt.imshow(test_img[:, :, n_slice, 0], cmap='gray')\n",
|
367 |
+
"plt.title('Flair Scan')\n",
|
368 |
+
"\n",
|
369 |
+
"plt.subplot(222)\n",
|
370 |
+
"plt.imshow(test_img[:, :, n_slice, 1], cmap='gray')\n",
|
371 |
+
"plt.title('T1ce Scan')\n",
|
372 |
+
"\n",
|
373 |
+
"plt.subplot(223)\n",
|
374 |
+
"plt.imshow(test_img[:, :, n_slice, 2], cmap='gray')\n",
|
375 |
+
"plt.title('T2 Scan')\n",
|
376 |
+
"\n",
|
377 |
+
"plt.subplot(224)\n",
|
378 |
+
"plt.imshow(test_mask[:, :, n_slice])\n",
|
379 |
+
"plt.title('Mask')\n",
|
380 |
+
"\n",
|
381 |
+
"plt.show()"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "markdown",
|
386 |
+
"metadata": {
|
387 |
+
"id": "ReTmFPr0QV17"
|
388 |
+
},
|
389 |
+
"source": [
|
390 |
+
"# Define image generators for training, validation and testing"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": null,
|
396 |
+
"metadata": {
|
397 |
+
"id": "HS9Dihs_QbqU"
|
398 |
+
},
|
399 |
+
"outputs": [],
|
400 |
+
"source": [
|
401 |
+
"DATASET_PATH = ''\n",
|
402 |
+
"train_img_dir = DATASET_PATH + 'train/scans/'\n",
|
403 |
+
"train_mask_dir = DATASET_PATH + 'train/masks/'\n",
|
404 |
+
"\n",
|
405 |
+
"val_img_dir = DATASET_PATH + 'val/scans/'\n",
|
406 |
+
"val_mask_dir = DATASET_PATH + 'val/masks/'\n",
|
407 |
+
"\n",
|
408 |
+
"test_img_dir = DATASET_PATH + 'test/scans/'\n",
|
409 |
+
"test_mask_dir = DATASET_PATH + 'test/masks/'\n",
|
410 |
+
"\n",
|
411 |
+
"train_img_list = os.listdir(train_img_dir)\n",
|
412 |
+
"train_mask_list = os.listdir(train_mask_dir)\n",
|
413 |
+
"\n",
|
414 |
+
"val_img_list = os.listdir(val_img_dir)\n",
|
415 |
+
"val_mask_list = os.listdir(val_mask_dir)\n",
|
416 |
+
"\n",
|
417 |
+
"test_img_list = os.listdir(test_img_dir)\n",
|
418 |
+
"test_mask_list = os.listdir(test_mask_dir)\n",
|
419 |
+
"\n",
|
420 |
+
"batch_size = 2\n",
|
421 |
+
"train_img_datagen = imageLoader(train_img_dir, train_img_list,\n",
|
422 |
+
" train_mask_dir, train_mask_list, batch_size)\n",
|
423 |
+
"\n",
|
424 |
+
"val_img_datagen = imageLoader(val_img_dir, val_img_list,\n",
|
425 |
+
" val_mask_dir, val_mask_list, batch_size)\n",
|
426 |
+
"\n",
|
427 |
+
"test_img_datagen = imageLoader(test_img_dir, test_img_list,\n",
|
428 |
+
" test_mask_dir, test_mask_list, batch_size)\n"
|
429 |
+
]
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"cell_type": "markdown",
|
433 |
+
"metadata": {
|
434 |
+
"id": "dBKMHMn96Z3c"
|
435 |
+
},
|
436 |
+
"source": [
|
437 |
+
"# Losses and metrics\n",
|
438 |
+
"* These losses and metrics best handle the problem of class imbalance\n",
|
439 |
+
"* Used: dice_coef as a metric, tversky_loss as a loss"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"cell_type": "code",
|
444 |
+
"execution_count": null,
|
445 |
+
"metadata": {
|
446 |
+
"id": "pshixCsr6eyt"
|
447 |
+
},
|
448 |
+
"outputs": [],
|
449 |
+
"source": [
|
450 |
+
"import tensorflow.keras.backend as K\n",
|
451 |
+
"\n",
|
452 |
+
"\n",
|
453 |
+
"def dice_coef(y_true, y_pred, smooth=1):\n",
|
454 |
+
" y_true_f = K.flatten(y_true)\n",
|
455 |
+
" y_pred_f = K.flatten(y_pred)\n",
|
456 |
+
" intersection = K.sum(y_true_f * y_pred_f)\n",
|
457 |
+
" return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) +\n",
|
458 |
+
" smooth)\n",
|
459 |
+
"\n",
|
460 |
+
"\n",
|
461 |
+
"def dice_coef_loss(y_true, y_pred):\n",
|
462 |
+
" return 1 - dice_coef(y_true, y_pred)\n",
|
463 |
+
"\n",
|
464 |
+
"\n",
|
465 |
+
"def tversky(y_true, y_pred, smooth=1, alpha=0.7):\n",
|
466 |
+
" y_true_pos = K.flatten(y_true)\n",
|
467 |
+
" y_pred_pos = K.flatten(y_pred)\n",
|
468 |
+
" true_pos = K.sum(y_true_pos * y_pred_pos)\n",
|
469 |
+
" false_neg = K.sum(y_true_pos * (1 - y_pred_pos))\n",
|
470 |
+
" false_pos = K.sum((1 - y_true_pos) * y_pred_pos)\n",
|
471 |
+
" return (true_pos + smooth) / (true_pos + alpha * false_neg +\n",
|
472 |
+
" (1 - alpha) * false_pos + smooth)\n",
|
473 |
+
"\n",
|
474 |
+
"\n",
|
475 |
+
"def tversky_loss(y_true, y_pred):\n",
|
476 |
+
" return 1 - tversky(y_true, y_pred)\n",
|
477 |
+
"\n",
|
478 |
+
"\n",
|
479 |
+
"def focal_tversky_loss(y_true, y_pred, gamma=0.75):\n",
|
480 |
+
" tv = tversky(y_true, y_pred)\n",
|
481 |
+
" return K.pow((1 - tv), gamma)"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "markdown",
|
486 |
+
"metadata": {
|
487 |
+
"id": "2o2WuIhaW5ff"
|
488 |
+
},
|
489 |
+
"source": [
|
490 |
+
"# Define loss, metrics and optimizer to be used for training"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"cell_type": "code",
|
495 |
+
"execution_count": null,
|
496 |
+
"metadata": {
|
497 |
+
"id": "WxiJ1eUQXJ4I"
|
498 |
+
},
|
499 |
+
"outputs": [],
|
500 |
+
"source": [
|
501 |
+
"from keras.models import Model\n",
|
502 |
+
"from keras.layers import Input, Conv3D, MaxPooling3D, Activation, add, concatenate, Conv3DTranspose, BatchNormalization, Dropout, UpSampling3D, multiply\n",
|
503 |
+
"from tensorflow.keras.optimizers import Adam\n",
|
504 |
+
"from keras import layers\n",
|
505 |
+
"\n",
|
506 |
+
"kernel_initializer = 'he_uniform'\n",
|
507 |
+
"\n",
|
508 |
+
"import segmentation_models_3D as sm\n",
|
509 |
+
"\n",
|
510 |
+
"metrics = [dice_coef]\n",
|
511 |
+
"\n",
|
512 |
+
"LR = 0.0001\n",
|
513 |
+
"optim = Adam(LR)\n",
|
514 |
+
"\n",
|
515 |
+
"steps_per_epoch = len(train_img_list) // batch_size\n",
|
516 |
+
"val_steps_per_epoch = len(val_img_list) // batch_size"
|
517 |
+
]
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"cell_type": "markdown",
|
521 |
+
"metadata": {
|
522 |
+
"id": "PR2Ugre0YP-v"
|
523 |
+
},
|
524 |
+
"source": [
|
525 |
+
"# 3D UNet Model"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": null,
|
531 |
+
"metadata": {
|
532 |
+
"id": "N0VyhdjCYVuZ"
|
533 |
+
},
|
534 |
+
"outputs": [],
|
535 |
+
"source": [
|
536 |
+
"def UNet(IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, IMG_CHANNELS, num_classes):\n",
|
537 |
+
" inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, IMG_CHANNELS))\n",
|
538 |
+
"\n",
|
539 |
+
" # Downsampling\n",
|
540 |
+
" c1 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(inputs)\n",
|
541 |
+
" c1 = Dropout(0.1)(c1)\n",
|
542 |
+
" c1 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c1)\n",
|
543 |
+
" p1 = MaxPooling3D((2, 2, 2))(c1)\n",
|
544 |
+
"\n",
|
545 |
+
" c2 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(p1)\n",
|
546 |
+
" c2 = Dropout(0.1)(c2)\n",
|
547 |
+
" c2 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c2)\n",
|
548 |
+
" p2 = MaxPooling3D((2, 2, 2))(c2)\n",
|
549 |
+
"\n",
|
550 |
+
" c3 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(p2)\n",
|
551 |
+
" c3 = Dropout(0.2)(c3)\n",
|
552 |
+
" c3 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c3)\n",
|
553 |
+
" p3 = MaxPooling3D((2, 2, 2))(c3)\n",
|
554 |
+
"\n",
|
555 |
+
" c4 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(p3)\n",
|
556 |
+
" c4 = Dropout(0.2)(c4)\n",
|
557 |
+
" c4 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c4)\n",
|
558 |
+
" p4 = MaxPooling3D((2, 2, 2))(c4)\n",
|
559 |
+
"\n",
|
560 |
+
" c5 = Conv3D(filters = 256, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(p4)\n",
|
561 |
+
" c5 = Dropout(0.3)(c5)\n",
|
562 |
+
" c5 = Conv3D(filters = 256, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c5)\n",
|
563 |
+
" \n",
|
564 |
+
" # Upsampling part\n",
|
565 |
+
" u6 = Conv3DTranspose(128, (2, 2, 2), strides=(2, 2, 2), padding='same')(c5)\n",
|
566 |
+
" u6 = concatenate([u6, c4])\n",
|
567 |
+
" c6 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(u6)\n",
|
568 |
+
" c6 = Dropout(0.2)(c6)\n",
|
569 |
+
" c6 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c6) \n",
|
570 |
+
" \n",
|
571 |
+
" u7 = Conv3DTranspose(64, (2, 2, 2), strides=(2, 2, 2), padding='same')(c6)\n",
|
572 |
+
" u7 = concatenate([u7, c3])\n",
|
573 |
+
" c7 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(u7)\n",
|
574 |
+
" c7 = Dropout(0.2)(c7)\n",
|
575 |
+
" c7 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c7) \n",
|
576 |
+
" \n",
|
577 |
+
" u8 = Conv3DTranspose(32, (2, 2, 2), strides=(2, 2, 2), padding='same')(c7)\n",
|
578 |
+
" u8 = concatenate([u8, c2])\n",
|
579 |
+
" c8 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(u8)\n",
|
580 |
+
" c8 = Dropout(0.1)(c8)\n",
|
581 |
+
" c8 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c8) \n",
|
582 |
+
"\n",
|
583 |
+
" u9 = Conv3DTranspose(16, (2, 2, 2), strides=(2, 2, 2), padding='same')(c8)\n",
|
584 |
+
" u9 = concatenate([u9, c1])\n",
|
585 |
+
" c9 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(u9)\n",
|
586 |
+
" c9 = Dropout(0.1)(c9)\n",
|
587 |
+
" c9 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation='relu', kernel_initializer=kernel_initializer, padding='same')(c9) \n",
|
588 |
+
"\n",
|
589 |
+
" outputs = Conv3D(num_classes, (1, 1, 1), activation='softmax')(c9)\n",
|
590 |
+
"\n",
|
591 |
+
" model = Model(inputs=[inputs], outputs=[outputs])\n",
|
592 |
+
" model.summary()\n",
|
593 |
+
"\n",
|
594 |
+
" return model"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "markdown",
|
599 |
+
"metadata": {
|
600 |
+
"id": "-Aw_Peb9iJYb"
|
601 |
+
},
|
602 |
+
"source": [
|
603 |
+
"# Test the working of the 3D UNet model"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"execution_count": null,
|
609 |
+
"metadata": {
|
610 |
+
"id": "fjdzCTisiMLI"
|
611 |
+
},
|
612 |
+
"outputs": [],
|
613 |
+
"source": [
|
614 |
+
"steps_per_epoch = len(train_img_list)//batch_size\n",
|
615 |
+
"val_steps_per_epoch = len(val_img_list)//batch_size\n",
|
616 |
+
"\n",
|
617 |
+
"model = UNet(IMG_HEIGHT = 128,\n",
|
618 |
+
" IMG_WIDTH = 128,\n",
|
619 |
+
" IMG_DEPTH = 128,\n",
|
620 |
+
" IMG_CHANNELS = 3,\n",
|
621 |
+
" num_classes = 4)\n",
|
622 |
+
"\n",
|
623 |
+
"model.compile(optimizer = optim, loss = tversky_loss, metrics = metrics)\n",
|
624 |
+
"\n",
|
625 |
+
"print(model.summary)\n",
|
626 |
+
"\n",
|
627 |
+
"print(model.input_shape)\n",
|
628 |
+
"print(model.output_shape)"
|
629 |
+
]
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"cell_type": "markdown",
|
633 |
+
"metadata": {
|
634 |
+
"id": "e6Cvn6hWvars"
|
635 |
+
},
|
636 |
+
"source": [
|
637 |
+
"# 3D Attention UNet Model"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"cell_type": "code",
|
642 |
+
"execution_count": null,
|
643 |
+
"metadata": {
|
644 |
+
"id": "JBcFdz80v2mL"
|
645 |
+
},
|
646 |
+
"outputs": [],
|
647 |
+
"source": [
|
648 |
+
"from keras.layers.core.activation import Activation\n",
|
649 |
+
"from tensorflow.keras import backend as K\n",
|
650 |
+
"from keras.layers import LeakyReLU\n",
|
651 |
+
"\n",
|
652 |
+
"def repeat_elem(tensor, rep):\n",
|
653 |
+
" # lambda function to repeat Repeats the elements of a tensor along an axis\n",
|
654 |
+
" #by a factor of rep.\n",
|
655 |
+
" # If tensor has shape (None, 128,128,3), lambda will return a tensor of shape \n",
|
656 |
+
" #(None, 128,128,6), if specified axis=3 and rep=2.\n",
|
657 |
+
"\n",
|
658 |
+
" return layers.Lambda(lambda x, repnum: K.repeat_elements(x, repnum, axis=4),\n",
|
659 |
+
" arguments={'repnum': rep})(tensor)\n",
|
660 |
+
"\n",
|
661 |
+
"def attention_block(x, gating, inter_shape):\n",
|
662 |
+
" shape_x = K.int_shape(x)\n",
|
663 |
+
" shape_g = K.int_shape(gating)\n",
|
664 |
+
"\n",
|
665 |
+
" # Getting the gating signal to the same number of filters as the inter_shape\n",
|
666 |
+
" phi_g = Conv3D(filters=inter_shape, kernel_size=1, strides=1, padding='same')(gating)\n",
|
667 |
+
"\n",
|
668 |
+
" # Geting the x signal to the same shape as the gating signal\n",
|
669 |
+
" theta_x = Conv3D(filters=inter_shape, kernel_size=3, strides=(\n",
|
670 |
+
" shape_x[1] // shape_g[1],\n",
|
671 |
+
" shape_x[2] // shape_g[2],\n",
|
672 |
+
" shape_x[3] // shape_g[3]\n",
|
673 |
+
" ), padding='same')(x)\n",
|
674 |
+
" shape_theta_x = K.int_shape(theta_x)\n",
|
675 |
+
"\n",
|
676 |
+
" print(shape_theta_x, shape_g)\n",
|
677 |
+
"\n",
|
678 |
+
" # Elemet-wise addition of the gating and x signals\n",
|
679 |
+
" xg_sum = add([phi_g, theta_x])\n",
|
680 |
+
" xg_sum = Activation('relu')(xg_sum)\n",
|
681 |
+
"\n",
|
682 |
+
" # 1x1x1 convolution\n",
|
683 |
+
" psi = Conv3D(filters=1, kernel_size=1, padding='same')(xg_sum)\n",
|
684 |
+
" sigmoid_psi = Activation('sigmoid')(psi)\n",
|
685 |
+
" shape_sigmoid = K.int_shape(sigmoid_psi)\n",
|
686 |
+
"\n",
|
687 |
+
" # Upsampling psi back to the original dimensions of x signal to enable \n",
|
688 |
+
" # element-wise multiplication with the signal\n",
|
689 |
+
"\n",
|
690 |
+
" upsampled_sigmoid_psi = UpSampling3D(size=(\n",
|
691 |
+
" shape_x[1] // shape_sigmoid[1], \n",
|
692 |
+
" shape_x[2] // shape_sigmoid[2],\n",
|
693 |
+
" shape_x[3] // shape_sigmoid[3]\n",
|
694 |
+
" ))(sigmoid_psi)\n",
|
695 |
+
"\n",
|
696 |
+
" # Expand the filter axis to the number of filters in the original x signal\n",
|
697 |
+
" upsampled_sigmoid_psi = repeat_elem(upsampled_sigmoid_psi, shape_x[4])\n",
|
698 |
+
"\n",
|
699 |
+
" # Element-wise multiplication of attention coefficients back onto original x signal\n",
|
700 |
+
" attention_coeffs = multiply([upsampled_sigmoid_psi, x])\n",
|
701 |
+
"\n",
|
702 |
+
" # Final 1x1x1 convolution to consolidate attention signal to original x dimensions\n",
|
703 |
+
" output = Conv3D(filters=shape_x[3], kernel_size=1, strides=1, padding='same')(attention_coeffs)\n",
|
704 |
+
" output = BatchNormalization()(output)\n",
|
705 |
+
" return output\n",
|
706 |
+
"\n",
|
707 |
+
"\n",
|
708 |
+
"# Gating signal\n",
|
709 |
+
"def gating_signal(input, output_size, batch_norm=False):\n",
|
710 |
+
" # Resize the down layer feature map into the same dimensions as the up layer feature map using 1x1 conv\n",
|
711 |
+
" # Return: the gating feature map with the same dimension of the up layer feature map\n",
|
712 |
+
" x = Conv3D(output_size, (1, 1, 1), padding='same')(input)\n",
|
713 |
+
" if batch_norm:\n",
|
714 |
+
" x = BatchNormalization()(x)\n",
|
715 |
+
" x = Activation('relu')(x)\n",
|
716 |
+
" return x\n",
|
717 |
+
"\n",
|
718 |
+
"\n",
|
719 |
+
"# Attention UNet\n",
|
720 |
+
"def attention_unet(IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, IMG_CHANNELS, num_classes, batch_norm = True):\n",
|
721 |
+
" inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, IMG_CHANNELS))\n",
|
722 |
+
" FILTER_NUM = 64 #\n",
|
723 |
+
" FILTER_SIZE = 3 #\n",
|
724 |
+
" UP_SAMPLING_SIZE = 2 # \n",
|
725 |
+
"\n",
|
726 |
+
" c1 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(inputs)\n",
|
727 |
+
" c1 = Dropout(0.1)(c1)\n",
|
728 |
+
" c1 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c1)\n",
|
729 |
+
" p1 = MaxPooling3D((2, 2, 2))(c1)\n",
|
730 |
+
"\n",
|
731 |
+
" c2 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(p1)\n",
|
732 |
+
" c2 = Dropout(0.1)(c2)\n",
|
733 |
+
" c2 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c2)\n",
|
734 |
+
" p2 = MaxPooling3D((2, 2, 2))(c2)\n",
|
735 |
+
"\n",
|
736 |
+
" c3 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(p2)\n",
|
737 |
+
" c3 = Dropout(0.2)(c3)\n",
|
738 |
+
" c3 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c3)\n",
|
739 |
+
" p3 = MaxPooling3D((2, 2, 2))(c3)\n",
|
740 |
+
"\n",
|
741 |
+
" c4 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(p3)\n",
|
742 |
+
" c4 = Dropout(0.2)(c4)\n",
|
743 |
+
" c4 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c4)\n",
|
744 |
+
" p4 = MaxPooling3D((2, 2, 2))(c4)\n",
|
745 |
+
"\n",
|
746 |
+
" c5 = Conv3D(filters = 256, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(p4)\n",
|
747 |
+
" c5 = Dropout(0.3)(c5)\n",
|
748 |
+
" c5 = Conv3D(filters = 256, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c5)\n",
|
749 |
+
" \n",
|
750 |
+
"\n",
|
751 |
+
" gating_6 = gating_signal(c5, 128, batch_norm)\n",
|
752 |
+
" att_6 = attention_block(c4, gating_6, 128)\n",
|
753 |
+
" u6 = UpSampling3D((2, 2, 2), data_format='channels_last')(c5)\n",
|
754 |
+
" u6 = concatenate([u6, att_6])\n",
|
755 |
+
" c6 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(u6)\n",
|
756 |
+
" c6 = Dropout(0.2)(c6)\n",
|
757 |
+
" c6 = Conv3D(filters = 128, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c6) \n",
|
758 |
+
" \n",
|
759 |
+
" gating_7 = gating_signal(c6, 64, batch_norm)\n",
|
760 |
+
" att_7 = attention_block(c3, gating_6, 64)\n",
|
761 |
+
" u7 = UpSampling3D((2, 2, 2), data_format='channels_last')(c6)\n",
|
762 |
+
" u7 = concatenate([u7, att_7])\n",
|
763 |
+
" c7 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(u7)\n",
|
764 |
+
" c7 = Dropout(0.2)(c7)\n",
|
765 |
+
" c7 = Conv3D(filters = 64, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c7) \n",
|
766 |
+
" \n",
|
767 |
+
" gating_8 = gating_signal(c7, 64, batch_norm)\n",
|
768 |
+
" att_8 = attention_block(c2, gating_6, 64)\n",
|
769 |
+
" u8 = UpSampling3D((2, 2, 2), data_format='channels_last')(c7)\n",
|
770 |
+
" u8 = concatenate([u8, att_8])\n",
|
771 |
+
" c8 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(u8)\n",
|
772 |
+
" c8 = Dropout(0.1)(c8)\n",
|
773 |
+
" c8 = Conv3D(filters = 32, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c8) \n",
|
774 |
+
"\n",
|
775 |
+
" gating_9 = gating_signal(c8, 64, batch_norm)\n",
|
776 |
+
" att_9 = attention_block(c1, gating_6, 64)\n",
|
777 |
+
" u9 = UpSampling3D((2, 2, 2), data_format='channels_last')(c8)\n",
|
778 |
+
" u9 = concatenate([u9, att_9])\n",
|
779 |
+
" c9 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(u9)\n",
|
780 |
+
" c9 = Dropout(0.1)(c9)\n",
|
781 |
+
" c9 = Conv3D(filters = 16, kernel_size = 3, strides = 1, activation=LeakyReLU(alpha=0.1), kernel_initializer=kernel_initializer, padding='same')(c9) \n",
|
782 |
+
"\n",
|
783 |
+
" outputs = Conv3D(num_classes, (1, 1, 1))(c9)\n",
|
784 |
+
" outputs = BatchNormalization()(outputs)\n",
|
785 |
+
" outputs = Activation('softmax')(outputs)\n",
|
786 |
+
"\n",
|
787 |
+
" model = Model(inputs=[inputs], outputs=[outputs], name=\"Attention_UNet\")\n",
|
788 |
+
" model.summary()\n",
|
789 |
+
"\n",
|
790 |
+
" return model"
|
791 |
+
]
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"cell_type": "markdown",
|
795 |
+
"metadata": {
|
796 |
+
"id": "xndmsEwjVhn7"
|
797 |
+
},
|
798 |
+
"source": [
|
799 |
+
"# Test the working of a 3D Attention UNet Model"
|
800 |
+
]
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"cell_type": "code",
|
804 |
+
"execution_count": null,
|
805 |
+
"metadata": {
|
806 |
+
"id": "pBNjxGbjVn9U"
|
807 |
+
},
|
808 |
+
"outputs": [],
|
809 |
+
"source": [
|
810 |
+
"steps_per_epoch = len(train_img_list)//batch_size\n",
|
811 |
+
"val_steps_per_epoch = len(val_img_list)//batch_size\n",
|
812 |
+
"\n",
|
813 |
+
"model = attention_unet(IMG_HEIGHT = 128,\n",
|
814 |
+
" IMG_WIDTH = 128,\n",
|
815 |
+
" IMG_DEPTH = 128,\n",
|
816 |
+
" IMG_CHANNELS = 3,\n",
|
817 |
+
" num_classes = 4)\n",
|
818 |
+
"\n",
|
819 |
+
"model.compile(optimizer = optim, loss = tversky_loss, metrics = metrics)\n",
|
820 |
+
"\n",
|
821 |
+
"print(model.summary)\n",
|
822 |
+
"\n",
|
823 |
+
"print(model.input_shape)\n",
|
824 |
+
"print(model.output_shape)"
|
825 |
+
]
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"cell_type": "markdown",
|
829 |
+
"metadata": {
|
830 |
+
"id": "8qnlrlr1YXu4"
|
831 |
+
},
|
832 |
+
"source": [
|
833 |
+
"# Fit the Model"
|
834 |
+
]
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"cell_type": "code",
|
838 |
+
"execution_count": null,
|
839 |
+
"metadata": {
|
840 |
+
"id": "UXmCjFvjYaSG"
|
841 |
+
},
|
842 |
+
"outputs": [],
|
843 |
+
"source": [
|
844 |
+
"import tensorflow.keras as keras\n",
|
845 |
+
"from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, CSVLogger, TerminateOnNaN\n",
|
846 |
+
"\n",
|
847 |
+
"checkpoint_path = ''\n",
|
848 |
+
"log_path = ''\n",
|
849 |
+
"\n",
|
850 |
+
"callbacks = [\n",
|
851 |
+
" EarlyStopping(monitor='val_loss', patience=4, verbose=1),\n",
|
852 |
+
" ReduceLROnPlateau(factor=0.1,\n",
|
853 |
+
" monitor='val_loss',\n",
|
854 |
+
" patience=4,\n",
|
855 |
+
" min_lr=0.0001,\n",
|
856 |
+
" verbose=1,\n",
|
857 |
+
" mode='min'),\n",
|
858 |
+
" ModelCheckpoint(checkpoint_path,\n",
|
859 |
+
" monitor='val_loss',\n",
|
860 |
+
" mode='min',\n",
|
861 |
+
" verbose=0,\n",
|
862 |
+
" save_best_only=True),\n",
|
863 |
+
" CSVLogger(log_path, separator=',', append=True),\n",
|
864 |
+
" TerminateOnNaN()\n",
|
865 |
+
"]\n",
|
866 |
+
"\n",
|
867 |
+
"history = model.fit(train_img_datagen,\n",
|
868 |
+
" steps_per_epoch=steps_per_epoch,\n",
|
869 |
+
" epochs=100,\n",
|
870 |
+
" verbose=1,\n",
|
871 |
+
" validation_data=val_img_datagen,\n",
|
872 |
+
" validation_steps=val_steps_per_epoch,\n",
|
873 |
+
" callbacks=callbacks\n",
|
874 |
+
" )\n",
|
875 |
+
"\n",
|
876 |
+
"history_callback = np.save('', history.history)"
|
877 |
+
]
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"cell_type": "markdown",
|
881 |
+
"metadata": {
|
882 |
+
"id": "pfcKmJv4jP2J"
|
883 |
+
},
|
884 |
+
"source": [
|
885 |
+
"# Load Model for more training"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"execution_count": null,
|
891 |
+
"metadata": {
|
892 |
+
"id": "7RXukeY_jiad"
|
893 |
+
},
|
894 |
+
"outputs": [],
|
895 |
+
"source": [
|
896 |
+
"import tensorflow.keras.models as load\n",
|
897 |
+
"import keras\n",
|
898 |
+
"model = load.load_model('', custom_objects={\n",
|
899 |
+
" 'tversky_loss': tversky_loss,\n",
|
900 |
+
" 'dice_coef': dice_coef\n",
|
901 |
+
"})\n",
|
902 |
+
"\n",
|
903 |
+
"checkpoint_path = ''\n",
|
904 |
+
"log_path = ''\n",
|
905 |
+
"\n",
|
906 |
+
"callbacks = [\n",
|
907 |
+
" EarlyStopping(monitor='val_loss', patience=4, verbose=1),\n",
|
908 |
+
" ReduceLROnPlateau(factor=0.1,\n",
|
909 |
+
" monitor='val_loss',\n",
|
910 |
+
" patience=4,\n",
|
911 |
+
" min_lr=0.0001,\n",
|
912 |
+
" verbose=1,\n",
|
913 |
+
" mode='min'),\n",
|
914 |
+
" ModelCheckpoint(checkpoint_path,\n",
|
915 |
+
" monitor='val_loss',\n",
|
916 |
+
" mode='min',\n",
|
917 |
+
" verbose=0,\n",
|
918 |
+
" save_best_only=True),\n",
|
919 |
+
" CSVLogger(log_path, separator=',', append=True),\n",
|
920 |
+
" TerminateOnNaN()\n",
|
921 |
+
"]\n",
|
922 |
+
"\n",
|
923 |
+
"history = model.fit(train_img_datagen,\n",
|
924 |
+
" steps_per_epoch=steps_per_epoch,\n",
|
925 |
+
" epochs=100,\n",
|
926 |
+
" verbose=1,\n",
|
927 |
+
" validation_data=val_img_datagen,\n",
|
928 |
+
" validation_steps=val_steps_per_epoch,\n",
|
929 |
+
" callbacks=callbacks\n",
|
930 |
+
" )\n",
|
931 |
+
"\n",
|
932 |
+
"history_callback = np.save('', history.history)"
|
933 |
+
]
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"cell_type": "markdown",
|
937 |
+
"metadata": {
|
938 |
+
"id": "SPBUC1HIfqDt"
|
939 |
+
},
|
940 |
+
"source": [
|
941 |
+
"# Plot the training and validation loss (tversky) and dice coefficient (metric) at each epoch"
|
942 |
+
]
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"cell_type": "code",
|
946 |
+
"execution_count": null,
|
947 |
+
"metadata": {
|
948 |
+
"id": "I7e4YkM5f1Jg"
|
949 |
+
},
|
950 |
+
"outputs": [],
|
951 |
+
"source": [
|
952 |
+
"history = np.load('',allow_pickle='TRUE').item()\n",
|
953 |
+
"\n",
|
954 |
+
"print(history)\n",
|
955 |
+
"loss = history['loss']\n",
|
956 |
+
"val_loss = history['val_loss']\n",
|
957 |
+
"epochs = range(1, len(loss) + 1)\n",
|
958 |
+
"plt.plot(epochs, loss, 'y', label='Training loss')\n",
|
959 |
+
"plt.plot(epochs, val_loss, 'r', label='Validation loss')\n",
|
960 |
+
"plt.title('Training and Validation Loss')\n",
|
961 |
+
"plt.xlabel('Epochs')\n",
|
962 |
+
"plt.ylabel('Loss')\n",
|
963 |
+
"plt.legend()\n",
|
964 |
+
"plt.show()\n",
|
965 |
+
"\n",
|
966 |
+
"acc = history['dice_coef']\n",
|
967 |
+
"val_acc = history['val_dice_coef']\n",
|
968 |
+
"\n",
|
969 |
+
"plt.plot(epochs, acc, 'y', label='Training accuracy')\n",
|
970 |
+
"plt.plot(epochs, val_acc, 'r', label='Validation accuracy')\n",
|
971 |
+
"plt.title('Trainign and Validation Accuracy')\n",
|
972 |
+
"plt.xlabel('Epochs')\n",
|
973 |
+
"plt.ylabel('Accuracy')\n",
|
974 |
+
"plt.legend()\n",
|
975 |
+
"plt.show()"
|
976 |
+
]
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"cell_type": "markdown",
|
980 |
+
"metadata": {
|
981 |
+
"id": "XV8kjMkemQ-W"
|
982 |
+
},
|
983 |
+
"source": [
|
984 |
+
"# Model Evaluation"
|
985 |
+
]
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"cell_type": "code",
|
989 |
+
"execution_count": null,
|
990 |
+
"metadata": {
|
991 |
+
"id": "ChhYHB8PmTnK"
|
992 |
+
},
|
993 |
+
"outputs": [],
|
994 |
+
"source": [
|
995 |
+
"from tensorflow.keras.models import load_model\n",
|
996 |
+
"my_model = load_model('', custom_objects={\n",
|
997 |
+
" 'tversky_loss': tversky_loss,\n",
|
998 |
+
" 'dice_coef': dice_coef},\n",
|
999 |
+
" compile = True)\n",
|
1000 |
+
"\n",
|
1001 |
+
"# Verify IoU on a batch of images from the test dataset\n",
|
1002 |
+
"batch_size = 8\n",
|
1003 |
+
"test_img_datagen = imageLoader(val_img_dir, val_img_list,\n",
|
1004 |
+
" val_mask_dir, val_mask_list, batch_size)\n",
|
1005 |
+
"\n",
|
1006 |
+
"test_image_batch, test_mask_batch = test_img_datagen.__next__()\n",
|
1007 |
+
"\n",
|
1008 |
+
"test_mask_batch_argmax = np.argmax(test_mask_batch, axis=4)\n",
|
1009 |
+
"\n",
|
1010 |
+
"results = my_model.evaluate(test_image_batch, test_mask_batch, batch_size=batch_size)\n",
|
1011 |
+
"print(\"test acc, test loss:\", results)"
|
1012 |
+
]
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"cell_type": "markdown",
|
1016 |
+
"metadata": {
|
1017 |
+
"id": "xvEqiU6SqY2y"
|
1018 |
+
},
|
1019 |
+
"source": [
|
1020 |
+
"# Predict on a test scan"
|
1021 |
+
]
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"cell_type": "code",
|
1025 |
+
"execution_count": null,
|
1026 |
+
"metadata": {
|
1027 |
+
"id": "8-MUQpCiqcxd"
|
1028 |
+
},
|
1029 |
+
"outputs": [],
|
1030 |
+
"source": [
|
1031 |
+
"from tensorflow.keras.models import load_model\n",
|
1032 |
+
"my_model = load_model('', compile=False)\n",
|
1033 |
+
"\n",
|
1034 |
+
"img_num = 53\n",
|
1035 |
+
"test_scan = np.load('' + str(img_num) + '.npy')\n",
|
1036 |
+
"\n",
|
1037 |
+
"test_mask = np.load('' + str(img_num) + '.npy')\n",
|
1038 |
+
"test_mask_argmax = np.argmax(test_mask, axis = 3)\n",
|
1039 |
+
"\n",
|
1040 |
+
"test_scan_input = np.expand_dims(test_scan, axis = 0)\n",
|
1041 |
+
"test_prediction = my_model.predict(test_scan_input)\n",
|
1042 |
+
"test_prediction_argmax = np.argmax(test_prediction, axis = 4)[0, :, :, :]"
|
1043 |
+
]
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"cell_type": "code",
|
1047 |
+
"execution_count": null,
|
1048 |
+
"metadata": {
|
1049 |
+
"colab": {
|
1050 |
+
"background_save": true
|
1051 |
+
},
|
1052 |
+
"id": "65FmAMNhmX8E"
|
1053 |
+
},
|
1054 |
+
"outputs": [],
|
1055 |
+
"source": [
|
1056 |
+
"# n_slice = 55\n",
|
1057 |
+
"n_slice = random.randint(0, test_mask_argmax.shape[2])\n",
|
1058 |
+
"\n",
|
1059 |
+
"plt.figure(figsize=(12,8))\n",
|
1060 |
+
"plt.subplot(231)\n",
|
1061 |
+
"plt.imshow(test_scan[:, :, n_slice, 1], cmap='gray')\n",
|
1062 |
+
"plt.title('Testing Scan')\n",
|
1063 |
+
"\n",
|
1064 |
+
"plt.subplot(232)\n",
|
1065 |
+
"plt.imshow(test_mask_argmax[:, :, n_slice])\n",
|
1066 |
+
"plt.title('Testing Label')\n",
|
1067 |
+
"\n",
|
1068 |
+
"plt.subplot(235)\n",
|
1069 |
+
"plt.imshow(test_prediction_argmax[:, :, n_slice])\n",
|
1070 |
+
"plt.title('Prediction on test image')\n",
|
1071 |
+
"\n",
|
1072 |
+
"plt.show()"
|
1073 |
+
]
|
1074 |
+
}
|
1075 |
+
],
|
1076 |
+
"metadata": {
|
1077 |
+
"accelerator": "GPU",
|
1078 |
+
"colab": {
|
1079 |
+
"collapsed_sections": [
|
1080 |
+
"TdEse3Kwq3JD",
|
1081 |
+
"L5yBxROtvDAI",
|
1082 |
+
"EORoZoj7yPfW",
|
1083 |
+
"-wICUx56ugDz",
|
1084 |
+
"nq3p80zN2ew2",
|
1085 |
+
"dBKMHMn96Z3c",
|
1086 |
+
"PR2Ugre0YP-v",
|
1087 |
+
"-Aw_Peb9iJYb",
|
1088 |
+
"e6Cvn6hWvars",
|
1089 |
+
"xndmsEwjVhn7",
|
1090 |
+
"pfcKmJv4jP2J"
|
1091 |
+
],
|
1092 |
+
"provenance": []
|
1093 |
+
},
|
1094 |
+
"gpuClass": "standard",
|
1095 |
+
"kernelspec": {
|
1096 |
+
"display_name": "Python 3",
|
1097 |
+
"name": "python3"
|
1098 |
+
},
|
1099 |
+
"language_info": {
|
1100 |
+
"name": "python"
|
1101 |
+
}
|
1102 |
+
},
|
1103 |
+
"nbformat": 4,
|
1104 |
+
"nbformat_minor": 0
|
1105 |
+
}
|