Translation
jwang214 commited on
Commit
c7f2297
·
verified ·
1 Parent(s): 1879c3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -3
README.md CHANGED
@@ -1,3 +1,137 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: translation
3
+ language:
4
+ - multilingual
5
+ - en
6
+ - am
7
+ - ar
8
+ - so
9
+ - sw
10
+ - pt
11
+ - af
12
+ - fr
13
+ - zu
14
+ - mg
15
+ - ha
16
+ - sn
17
+ - arz
18
+ - ny
19
+ - ig
20
+ - xh
21
+ - yo
22
+ - st
23
+ - rw
24
+ - tn
25
+ - ti
26
+ - ts
27
+ - om
28
+ - run
29
+ - nso
30
+ - ee
31
+ - ln
32
+ - tw
33
+ - pcm
34
+ - gaa
35
+ - loz
36
+ - lg
37
+ - guw
38
+ - bem
39
+ - efi
40
+ - lue
41
+ - lua
42
+ - toi
43
+ - ve
44
+ - tum
45
+ - tll
46
+ - iso
47
+ - kqn
48
+ - zne
49
+ - umb
50
+ - mos
51
+ - tiv
52
+ - lu
53
+ - ff
54
+ - kwy
55
+ - bci
56
+ - rnd
57
+ - luo
58
+ - wal
59
+ - ss
60
+ - lun
61
+ - wo
62
+ - nyk
63
+ - kj
64
+ - ki
65
+ - fon
66
+ - bm
67
+ - cjk
68
+ - din
69
+ - dyu
70
+ - kab
71
+ - kam
72
+ - kbp
73
+ - kr
74
+ - kmb
75
+ - kg
76
+ - nus
77
+ - sg
78
+ - taq
79
+ - tzm
80
+ - nqo
81
+
82
+ license: apache-2.0
83
+ ---
84
+
85
+ This is an improved version of [AfriCOMET-QE-STL (quality estimation single task)](https://github.com/masakhane-io/africomet) evaluation model: It receives a source sentence, and a translation, and returns a score that reflects the quality of the translation compared to the source.
86
+ Different from the original AfriCOMET-QE-STL, this QE model is based on an improved African enhanced encoder, [afro-xlmr-large-76L](https://huggingface.co/Davlan/afro-xlmr-large-76L), which leads better performance on quality estimation of African-related machine translation, verified in WMT 2024 Metrics Shared Task.
87
+
88
+ # Paper
89
+
90
+ [AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages](https://arxiv.org/abs/2311.09828) (Wang et al., arXiv 2023)
91
+
92
+ # License
93
+
94
+ Apache-2.0
95
+
96
+ # Usage (AfriCOMET)
97
+
98
+ Using this model requires unbabel-comet to be installed:
99
+
100
+ ```bash
101
+ pip install --upgrade pip # ensures that pip is current
102
+ pip install unbabel-comet
103
+ ```
104
+
105
+ Then you can use it through comet CLI:
106
+
107
+ ```bash
108
+ comet-score -s {source-inputs}.txt -t {translation-outputs}.txt --model masakhane/africomet-qe-stl
109
+ ```
110
+
111
+ Or using Python:
112
+ ```python
113
+ from comet import download_model, load_from_checkpoint
114
+
115
+ model_path = download_model("masakhane/africomet-qe-stl")
116
+ model = load_from_checkpoint(model_path)
117
+ data = [
118
+ {
119
+ "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
120
+ "mt": "Nadal's head to head record against the Canadian is 7–2.",
121
+ },
122
+ {
123
+ "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
124
+ "mt": "He recently lost against Raonic in the Brisbane Open.",
125
+ }
126
+ ]
127
+ model_output = model.predict(data, batch_size=8, gpus=1)
128
+ print (model_output)
129
+ ```
130
+
131
+ # Intended uses
132
+
133
+ Our model is intented to be used for **MT quality estimation**.
134
+
135
+ Given a source sentence and a translation outputs a single score between 0 and 1 where 1 represents a perfect translation.
136
+
137
+