---
library_name: peft
license: llama3.2
base_model: unsloth/Llama-3.2-1B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- MATH-Hard_train_data.json
ds_type: json
path: /workspace/input_data/MATH-Hard_train_data.json
type:
field_input: problem
field_instruction: type
field_output: solution
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: masatochi/tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/MATH-Hard_train_data.json
model_type: LlamaForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
save_strategy: steps
sequence_len: 4096
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: lkotbimehdi
wandb_mode: online
wandb_project: lko
wandb_run: miner_id_24
wandb_runid: 489dae6d-1165-481a-ae95-7be2a9d2b69b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
# tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b
This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8689
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0005 | 0.0026 | 1 | 1.0009 |
| 0.9353 | 0.0052 | 2 | 0.9893 |
| 0.9784 | 0.0077 | 3 | 0.9538 |
| 1.0801 | 0.0103 | 4 | 0.9169 |
| 0.8091 | 0.0129 | 5 | 0.9048 |
| 0.8245 | 0.0155 | 6 | 0.9021 |
| 0.8799 | 0.0181 | 7 | 0.8947 |
| 0.7926 | 0.0206 | 8 | 0.8848 |
| 0.9324 | 0.0232 | 9 | 0.8763 |
| 0.8441 | 0.0258 | 10 | 0.8689 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1