--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - MATH-Hard_train_data.json ds_type: json path: /workspace/input_data/MATH-Hard_train_data.json type: field_input: problem field_instruction: type field_output: solution system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: masatochi/tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b hub_strategy: checkpoint hub_token: null learning_rate: 0.001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/MATH-Hard_train_data.json model_type: LlamaForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 save_strategy: steps sequence_len: 4096 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: lkotbimehdi wandb_mode: online wandb_project: lko wandb_run: miner_id_24 wandb_runid: 489dae6d-1165-481a-ae95-7be2a9d2b69b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# tuning-489dae6d-1165-481a-ae95-7be2a9d2b69b This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0005 | 0.0026 | 1 | 1.0009 | | 0.9353 | 0.0052 | 2 | 0.9893 | | 0.9784 | 0.0077 | 3 | 0.9538 | | 1.0801 | 0.0103 | 4 | 0.9169 | | 0.8091 | 0.0129 | 5 | 0.9048 | | 0.8245 | 0.0155 | 6 | 0.9021 | | 0.8799 | 0.0181 | 7 | 0.8947 | | 0.7926 | 0.0206 | 8 | 0.8848 | | 0.9324 | 0.0232 | 9 | 0.8763 | | 0.8441 | 0.0258 | 10 | 0.8689 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1