matank commited on
Commit
7e063e6
·
1 Parent(s): 201268e

initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.34 +/- 20.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4e3fd28b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4e3fd2940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4e3fd29d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4e3fd2a60>", "_build": "<function ActorCriticPolicy._build at 0x7fb4e3fd2af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4e3fd2b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4e3fd2c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4e3fd2ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4e3fd2d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4e3fd2dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4e3fd2e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4e3fd2ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb4e3fd4500>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680131865716270967, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOKsz3DMUC60GvnOmbLszUMr1K7SvYIugAAgD8AAIA/gAa1PYVT6LmGPae7VnUHNbwZRruTi3u0AACAPwAAgD9NIu49bM77u2CQODwmt388jCsxPa1QT70AAIA/AACAP805aT0pOBi6xrXpOhp50DQM5ci6twoKugAAgD8AAIA/oLOIPk1ckT7GZWu+VDFdvoUfXbrei8K9AAAAAAAAAABA66Y9pKANuyATWbxp5JM8kBJqPJCggL0AAIA/AAAAAFMpGT7P8ii87s0duyQqHjnKNY69qJhOOgAAgD8AAIA/+gAFvi5y1T46V3E+AOWTvuCXoT1IETO7AAAAAAAAAAAAqks9jhGlPV5GR71z/lC+OmyiPD4agr0AAAAAAAAAAJoySD32wDO6kElSOiK41bQARQC7aGZzuQAAgD8AAIA/ADANPcPxKLoJwZ24IKeRsx9gUbo8xbs3AACAPwAAgD/m7g89jy4kuvjiJjmin94zI6OKOpheQrgAAIA/AAAAADOqujxIG5y6xV9uOhGORrYIlwW6Fv+IuQAAgD8AAIA/Rr+APtKJVz5K6j88CsRvvkT91T2FoF69AAAAAAAAAACAU5Q9ezquugpqCjarJcUw6VJ3uH14GLUAAIA/AACAPyY9eD7xFQo/m7qDPLFwoL5aAvI9/jZlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJcreUs5PYECUhpRSlIwBbJRN6AOMAXSUR0CV09UuctoSdX2UKGgGaAloD0MIKA01CknbY0CUhpRSlGgVTegDaBZHQJXiAF9roGJ1fZQoaAZoCWgPQwj6nLtdL39fQJSGlFKUaBVN6ANoFkdAledfJA+pwXV9lChoBmgJaA9DCAADQYCM5GNAlIaUUpRoFU3oA2gWR0CV62DjR2KVdX2UKGgGaAloD0MIzCVV203VZECUhpRSlGgVTegDaBZHQJX2EYKpkwx1fZQoaAZoCWgPQwg1YmafxzVkQJSGlFKUaBVN6ANoFkdAlgVbIcR15nV9lChoBmgJaA9DCBYTm49rYmFAlIaUUpRoFU3oA2gWR0CWGSZ+QU5/dX2UKGgGaAloD0MIo5I6Ac06ZECUhpRSlGgVTegDaBZHQJYb/38GcF11fZQoaAZoCWgPQwjFjzF3rVBmQJSGlFKUaBVN6ANoFkdAlh0mYOUdJnV9lChoBmgJaA9DCGvVrgnpnGVAlIaUUpRoFU3oA2gWR0CWHwekpI+XdX2UKGgGaAloD0MI3ewPlNvTZUCUhpRSlGgVTegDaBZHQJYfjEyckMV1fZQoaAZoCWgPQwgPtAJDVsRdQJSGlFKUaBVN6ANoFkdAliPp17pmmXV9lChoBmgJaA9DCLGiBtMwV2dAlIaUUpRoFU3oA2gWR0CWJrDrJKaodX2UKGgGaAloD0MISFFn7iHXYkCUhpRSlGgVTegDaBZHQJYnJ5yEL6V1fZQoaAZoCWgPQwjajxSRYQNlQJSGlFKUaBVN6ANoFkdAlkVXAAQxvnV9lChoBmgJaA9DCCO/fogNHmRAlIaUUpRoFU3oA2gWR0CWReJemelLdX2UKGgGaAloD0MIS5S9pZzqY0CUhpRSlGgVTegDaBZHQJZGExoIv8J1fZQoaAZoCWgPQwjyttJrs3tjQJSGlFKUaBVN6ANoFkdAllJ4OYplSXV9lChoBmgJaA9DCLtE9dbAMF5AlIaUUpRoFU3oA2gWR0CWVy2BJ7LMdX2UKGgGaAloD0MIcVZETXQEY0CUhpRSlGgVTegDaBZHQJZajuRcNYt1fZQoaAZoCWgPQwjg2LPnssNgQJSGlFKUaBVN6ANoFkdAlmErpqynk3V9lChoBmgJaA9DCLE1W3nJjWVAlIaUUpRoFU3oA2gWR0CWbi+RHPNWdX2UKGgGaAloD0MIc7uX++SGY0CUhpRSlGgVTegDaBZHQJZ+HAZbY9R1fZQoaAZoCWgPQwjCvp1EBL9iQJSGlFKUaBVN6ANoFkdAln+tXxOLznV9lChoBmgJaA9DCJ/J/nmatmFAlIaUUpRoFU3oA2gWR0CWgFB9kSVXdX2UKGgGaAloD0MImbhVEIPTY0CUhpRSlGgVTegDaBZHQJaBZf4REnd1fZQoaAZoCWgPQwhBt5c0xvJiQJSGlFKUaBVN6ANoFkdAloGw6IWP93V9lChoBmgJaA9DCAVpxqJpP2VAlIaUUpRoFU3oA2gWR0CWhLRujynUdX2UKGgGaAloD0MIkIZT5uagZkCUhpRSlGgVTegDaBZHQJaG3ollbvB1fZQoaAZoCWgPQwhtH/KWqwhdQJSGlFKUaBVN6ANoFkdAloc8PvrnknV9lChoBmgJaA9DCEEsmzmkw2NAlIaUUpRoFU3oA2gWR0CWibd7OVxCdX2UKGgGaAloD0MIbApkdhYqZkCUhpRSlGgVTegDaBZHQJaePRnezld1fZQoaAZoCWgPQwhLXMe44rJiQJSGlFKUaBVN6ANoFkdAlp5vFzdUKnV9lChoBmgJaA9DCJPgDWlUC2lAlIaUUpRoFU3oA2gWR0CWrr1Iy0rtdX2UKGgGaAloD0MIPQrXo3CVZ0CUhpRSlGgVTegDaBZHQJa0ZagVXV91fZQoaAZoCWgPQwjWVYFajFhkQJSGlFKUaBVN6ANoFkdAlreBCQcPv3V9lChoBmgJaA9DCN6QRgXO3GNAlIaUUpRoFU3oA2gWR0CWvbl4TsY3dX2UKGgGaAloD0MI2h8ot+2fYUCUhpRSlGgVTegDaBZHQJbHhlDneSB1fZQoaAZoCWgPQwhGs7J9yNtiQJSGlFKUaBVN6ANoFkdAltSfMwDeTHV9lChoBmgJaA9DCDpdFhOb1GJAlIaUUpRoFU3oA2gWR0CW1io8p1A8dX2UKGgGaAloD0MI/ilVouxQYkCUhpRSlGgVTegDaBZHQJbWyGetjkN1fZQoaAZoCWgPQwg6sBwhAxxgQJSGlFKUaBVN6ANoFkdAltfCimEXcnV9lChoBmgJaA9DCMo0mlwMS2FAlIaUUpRoFU3oA2gWR0CW2AWz4UN8dX2UKGgGaAloD0MIjKAxkyghZ0CUhpRSlGgVTegDaBZHQJba97hNucd1fZQoaAZoCWgPQwiZ1TvcDtlkQJSGlFKUaBVN6ANoFkdAlt3gprk8zXV9lChoBmgJaA9DCNmXbDzY3mNAlIaUUpRoFU3oA2gWR0CW3mVjqfOEdX2UKGgGaAloD0MIox8Np0zuZUCUhpRSlGgVTegDaBZHQJbhuuuA7Pp1fZQoaAZoCWgPQwgewvhp3B5fQJSGlFKUaBVN6ANoFkdAluJ0s4DLbHV9lChoBmgJaA9DCAR1yqObxmBAlIaUUpRoFU3oA2gWR0CW4ry57PY4dX2UKGgGaAloD0MIe0ljtA7HYkCUhpRSlGgVTegDaBZHQJcFz2AXl8x1fZQoaAZoCWgPQwhYdOs1PY1lQJSGlFKUaBVN6ANoFkdAlwpoREnb7HV9lChoBmgJaA9DCIrnbAEhEWJAlIaUUpRoFU3oA2gWR0CXDdAvL5h0dX2UKGgGaAloD0MIrhBWY4knY0CUhpRSlGgVTegDaBZHQJcUgMCtA9p1fZQoaAZoCWgPQwjVlc/yPJBJQJSGlFKUaBVL2GgWR0CXFIXwb2lEdX2UKGgGaAloD0MIVACMZ9DwY0CUhpRSlGgVTegDaBZHQJciQ+5e7cx1fZQoaAZoCWgPQwglP+JXLDxhQJSGlFKUaBVN6ANoFkdAlzFbMotth3V9lChoBmgJaA9DCMql8QsvB2NAlIaUUpRoFU3oA2gWR0CXMvX1rZandX2UKGgGaAloD0MIvALRk7IaZUCUhpRSlGgVTegDaBZHQJczk+0PYnR1fZQoaAZoCWgPQwjmywuwj3lhQJSGlFKUaBVN6ANoFkdAlzSku+RHPXV9lChoBmgJaA9DCJWdflAXe2RAlIaUUpRoFU3oA2gWR0CXNPAaNuLrdX2UKGgGaAloD0MIMe4G0VoMY0CUhpRSlGgVTegDaBZHQJc4Bqi48U51fZQoaAZoCWgPQwhaLhudc5ViQJSGlFKUaBVN6ANoFkdAlzow/X5FgHV9lChoBmgJaA9DCC2Xjc55emVAlIaUUpRoFU3oA2gWR0CXOovfj0cwdX2UKGgGaAloD0MIui784PxeZUCUhpRSlGgVTegDaBZHQJc8xs67ulZ1fZQoaAZoCWgPQwgFb0ijAh5lQJSGlFKUaBVN6ANoFkdAlz1GGRFI/nV9lChoBmgJaA9DCCrltRI66mFAlIaUUpRoFU3oA2gWR0CXPXhYvFm4dX2UKGgGaAloD0MId2aC4VwnPUCUhpRSlGgVS9doFkdAl1gJooNNJ3V9lChoBmgJaA9DCFx0stR6OURAlIaUUpRoFUvJaBZHQJdfTZezD4x1fZQoaAZoCWgPQwjGpwAYz6hjQJSGlFKUaBVN6ANoFkdAl2VoraufVnV9lChoBmgJaA9DCHtJY7SOwGFAlIaUUpRoFU3oA2gWR0CXaEXizcASdX2UKGgGaAloD0MIQYNNnccRZECUhpRSlGgVTegDaBZHQJduKY5T6zp1fZQoaAZoCWgPQwgsuYrF7zNgQJSGlFKUaBVN6ANoFkdAl24uNo8IRnV9lChoBmgJaA9DCNIZGHlZswJAlIaUUpRoFUvcaBZHQJdyfA2ycCp1fZQoaAZoCWgPQwjVeOkmMbtWQJSGlFKUaBVN6ANoFkdAl3eAXIlt0nV9lChoBmgJaA9DCBtoPudur2JAlIaUUpRoFU3oA2gWR0CXhCkS26TXdX2UKGgGaAloD0MIXvHUIw2BXECUhpRSlGgVTegDaBZHQJeFwoKD0191fZQoaAZoCWgPQwg978aCwhVcQJSGlFKUaBVN6ANoFkdAl4ZgX2ugYnV9lChoBmgJaA9DCO5aQj7oM2ZAlIaUUpRoFU3oA2gWR0CXh2PTG5tndX2UKGgGaAloD0MIuReYFYpnXUCUhpRSlGgVTegDaBZHQJeHqWMS9M91fZQoaAZoCWgPQwjsSzYebB1uQJSGlFKUaBVNSwFoFkdAl4xrFfiPyXV9lChoBmgJaA9DCIo5CDpaOGRAlIaUUpRoFU3oA2gWR0CXjaB4Uvf1dX2UKGgGaAloD0MIkxgEVg5nYECUhpRSlGgVTegDaBZHQJeOIVQAMlV1fZQoaAZoCWgPQwh2NuSfGXdfQJSGlFKUaBVN6ANoFkdAl5F7RnezlnV9lChoBmgJaA9DCOcb0T3ru2NAlIaUUpRoFU3oA2gWR0CXkm06YE4edX2UKGgGaAloD0MIHo1D/a6DZUCUhpRSlGgVTegDaBZHQJevd4bCJoF1fZQoaAZoCWgPQwhPBkfJK2BlQJSGlFKUaBVN6ANoFkdAl7UVwLmZE3V9lChoBmgJaA9DCKUuGcfILWJAlIaUUpRoFU3oA2gWR0CXveZ+x4Y8dX2UKGgGaAloD0MI5geu8gROZ0CUhpRSlGgVTegDaBZHQJfFWqIacZt1fZQoaAZoCWgPQwg1uK0tvJ9lQJSGlFKUaBVN6ANoFkdAl8VhKg7HQ3V9lChoBmgJaA9DCILix5i7pllAlIaUUpRoFU3oA2gWR0CXzFgP3BYWdX2UKGgGaAloD0MIH7sLlJRtY0CUhpRSlGgVTegDaBZHQJfmeL74zrN1fZQoaAZoCWgPQwgIza57K3diQJSGlFKUaBVN6ANoFkdAl+gpAMUh3nV9lChoBmgJaA9DCPBS6pLxbWRAlIaUUpRoFU3oA2gWR0CX6NPTG5tndX2UKGgGaAloD0MIkBX8NsRtY0CUhpRSlGgVTegDaBZHQJfp8fT1CgN1fZQoaAZoCWgPQwiLTpZa7ypkQJSGlFKUaBVN6ANoFkdAl+o/IbOu73V9lChoBmgJaA9DCEChnj4Cs2NAlIaUUpRoFU3oA2gWR0CX79kAxSHedX2UKGgGaAloD0MIpKXydoQGYkCUhpRSlGgVTegDaBZHQJfw4YoAn2J1fZQoaAZoCWgPQwjfTiLCvwxnQJSGlFKUaBVN6ANoFkdAl/FWecx0uHV9lChoBmgJaA9DCHGqtTALy2NAlIaUUpRoFU3oA2gWR0CX9FKHfuTidX2UKGgGaAloD0MI1NUdi228Y0CUhpRSlGgVTegDaBZHQJf1LAj6eoV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
matan-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f8c37edbe313b6ad78f7c23efc8e5c76738fd9a597a1034edfee7ada15f3e24
3
+ size 147425
matan-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
matan-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4e3fd28b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4e3fd2940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4e3fd29d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4e3fd2a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb4e3fd2af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb4e3fd2b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4e3fd2c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4e3fd2ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb4e3fd2d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4e3fd2dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4e3fd2e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4e3fd2ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb4e3fd4500>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680131865716270967,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOKsz3DMUC60GvnOmbLszUMr1K7SvYIugAAgD8AAIA/gAa1PYVT6LmGPae7VnUHNbwZRruTi3u0AACAPwAAgD9NIu49bM77u2CQODwmt388jCsxPa1QT70AAIA/AACAP805aT0pOBi6xrXpOhp50DQM5ci6twoKugAAgD8AAIA/oLOIPk1ckT7GZWu+VDFdvoUfXbrei8K9AAAAAAAAAABA66Y9pKANuyATWbxp5JM8kBJqPJCggL0AAIA/AAAAAFMpGT7P8ii87s0duyQqHjnKNY69qJhOOgAAgD8AAIA/+gAFvi5y1T46V3E+AOWTvuCXoT1IETO7AAAAAAAAAAAAqks9jhGlPV5GR71z/lC+OmyiPD4agr0AAAAAAAAAAJoySD32wDO6kElSOiK41bQARQC7aGZzuQAAgD8AAIA/ADANPcPxKLoJwZ24IKeRsx9gUbo8xbs3AACAPwAAgD/m7g89jy4kuvjiJjmin94zI6OKOpheQrgAAIA/AAAAADOqujxIG5y6xV9uOhGORrYIlwW6Fv+IuQAAgD8AAIA/Rr+APtKJVz5K6j88CsRvvkT91T2FoF69AAAAAAAAAACAU5Q9ezquugpqCjarJcUw6VJ3uH14GLUAAIA/AACAPyY9eD7xFQo/m7qDPLFwoL5aAvI9/jZlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJcreUs5PYECUhpRSlIwBbJRN6AOMAXSUR0CV09UuctoSdX2UKGgGaAloD0MIKA01CknbY0CUhpRSlGgVTegDaBZHQJXiAF9roGJ1fZQoaAZoCWgPQwj6nLtdL39fQJSGlFKUaBVN6ANoFkdAledfJA+pwXV9lChoBmgJaA9DCAADQYCM5GNAlIaUUpRoFU3oA2gWR0CV62DjR2KVdX2UKGgGaAloD0MIzCVV203VZECUhpRSlGgVTegDaBZHQJX2EYKpkwx1fZQoaAZoCWgPQwg1YmafxzVkQJSGlFKUaBVN6ANoFkdAlgVbIcR15nV9lChoBmgJaA9DCBYTm49rYmFAlIaUUpRoFU3oA2gWR0CWGSZ+QU5/dX2UKGgGaAloD0MIo5I6Ac06ZECUhpRSlGgVTegDaBZHQJYb/38GcF11fZQoaAZoCWgPQwjFjzF3rVBmQJSGlFKUaBVN6ANoFkdAlh0mYOUdJnV9lChoBmgJaA9DCGvVrgnpnGVAlIaUUpRoFU3oA2gWR0CWHwekpI+XdX2UKGgGaAloD0MI3ewPlNvTZUCUhpRSlGgVTegDaBZHQJYfjEyckMV1fZQoaAZoCWgPQwgPtAJDVsRdQJSGlFKUaBVN6ANoFkdAliPp17pmmXV9lChoBmgJaA9DCLGiBtMwV2dAlIaUUpRoFU3oA2gWR0CWJrDrJKaodX2UKGgGaAloD0MISFFn7iHXYkCUhpRSlGgVTegDaBZHQJYnJ5yEL6V1fZQoaAZoCWgPQwjajxSRYQNlQJSGlFKUaBVN6ANoFkdAlkVXAAQxvnV9lChoBmgJaA9DCCO/fogNHmRAlIaUUpRoFU3oA2gWR0CWReJemelLdX2UKGgGaAloD0MIS5S9pZzqY0CUhpRSlGgVTegDaBZHQJZGExoIv8J1fZQoaAZoCWgPQwjyttJrs3tjQJSGlFKUaBVN6ANoFkdAllJ4OYplSXV9lChoBmgJaA9DCLtE9dbAMF5AlIaUUpRoFU3oA2gWR0CWVy2BJ7LMdX2UKGgGaAloD0MIcVZETXQEY0CUhpRSlGgVTegDaBZHQJZajuRcNYt1fZQoaAZoCWgPQwjg2LPnssNgQJSGlFKUaBVN6ANoFkdAlmErpqynk3V9lChoBmgJaA9DCLE1W3nJjWVAlIaUUpRoFU3oA2gWR0CWbi+RHPNWdX2UKGgGaAloD0MIc7uX++SGY0CUhpRSlGgVTegDaBZHQJZ+HAZbY9R1fZQoaAZoCWgPQwjCvp1EBL9iQJSGlFKUaBVN6ANoFkdAln+tXxOLznV9lChoBmgJaA9DCJ/J/nmatmFAlIaUUpRoFU3oA2gWR0CWgFB9kSVXdX2UKGgGaAloD0MImbhVEIPTY0CUhpRSlGgVTegDaBZHQJaBZf4REnd1fZQoaAZoCWgPQwhBt5c0xvJiQJSGlFKUaBVN6ANoFkdAloGw6IWP93V9lChoBmgJaA9DCAVpxqJpP2VAlIaUUpRoFU3oA2gWR0CWhLRujynUdX2UKGgGaAloD0MIkIZT5uagZkCUhpRSlGgVTegDaBZHQJaG3ollbvB1fZQoaAZoCWgPQwhtH/KWqwhdQJSGlFKUaBVN6ANoFkdAloc8PvrnknV9lChoBmgJaA9DCEEsmzmkw2NAlIaUUpRoFU3oA2gWR0CWibd7OVxCdX2UKGgGaAloD0MIbApkdhYqZkCUhpRSlGgVTegDaBZHQJaePRnezld1fZQoaAZoCWgPQwhLXMe44rJiQJSGlFKUaBVN6ANoFkdAlp5vFzdUKnV9lChoBmgJaA9DCJPgDWlUC2lAlIaUUpRoFU3oA2gWR0CWrr1Iy0rtdX2UKGgGaAloD0MIPQrXo3CVZ0CUhpRSlGgVTegDaBZHQJa0ZagVXV91fZQoaAZoCWgPQwjWVYFajFhkQJSGlFKUaBVN6ANoFkdAlreBCQcPv3V9lChoBmgJaA9DCN6QRgXO3GNAlIaUUpRoFU3oA2gWR0CWvbl4TsY3dX2UKGgGaAloD0MI2h8ot+2fYUCUhpRSlGgVTegDaBZHQJbHhlDneSB1fZQoaAZoCWgPQwhGs7J9yNtiQJSGlFKUaBVN6ANoFkdAltSfMwDeTHV9lChoBmgJaA9DCDpdFhOb1GJAlIaUUpRoFU3oA2gWR0CW1io8p1A8dX2UKGgGaAloD0MI/ilVouxQYkCUhpRSlGgVTegDaBZHQJbWyGetjkN1fZQoaAZoCWgPQwg6sBwhAxxgQJSGlFKUaBVN6ANoFkdAltfCimEXcnV9lChoBmgJaA9DCMo0mlwMS2FAlIaUUpRoFU3oA2gWR0CW2AWz4UN8dX2UKGgGaAloD0MIjKAxkyghZ0CUhpRSlGgVTegDaBZHQJba97hNucd1fZQoaAZoCWgPQwiZ1TvcDtlkQJSGlFKUaBVN6ANoFkdAlt3gprk8zXV9lChoBmgJaA9DCNmXbDzY3mNAlIaUUpRoFU3oA2gWR0CW3mVjqfOEdX2UKGgGaAloD0MIox8Np0zuZUCUhpRSlGgVTegDaBZHQJbhuuuA7Pp1fZQoaAZoCWgPQwgewvhp3B5fQJSGlFKUaBVN6ANoFkdAluJ0s4DLbHV9lChoBmgJaA9DCAR1yqObxmBAlIaUUpRoFU3oA2gWR0CW4ry57PY4dX2UKGgGaAloD0MIe0ljtA7HYkCUhpRSlGgVTegDaBZHQJcFz2AXl8x1fZQoaAZoCWgPQwhYdOs1PY1lQJSGlFKUaBVN6ANoFkdAlwpoREnb7HV9lChoBmgJaA9DCIrnbAEhEWJAlIaUUpRoFU3oA2gWR0CXDdAvL5h0dX2UKGgGaAloD0MIrhBWY4knY0CUhpRSlGgVTegDaBZHQJcUgMCtA9p1fZQoaAZoCWgPQwjVlc/yPJBJQJSGlFKUaBVL2GgWR0CXFIXwb2lEdX2UKGgGaAloD0MIVACMZ9DwY0CUhpRSlGgVTegDaBZHQJciQ+5e7cx1fZQoaAZoCWgPQwglP+JXLDxhQJSGlFKUaBVN6ANoFkdAlzFbMotth3V9lChoBmgJaA9DCMql8QsvB2NAlIaUUpRoFU3oA2gWR0CXMvX1rZandX2UKGgGaAloD0MIvALRk7IaZUCUhpRSlGgVTegDaBZHQJczk+0PYnR1fZQoaAZoCWgPQwjmywuwj3lhQJSGlFKUaBVN6ANoFkdAlzSku+RHPXV9lChoBmgJaA9DCJWdflAXe2RAlIaUUpRoFU3oA2gWR0CXNPAaNuLrdX2UKGgGaAloD0MIMe4G0VoMY0CUhpRSlGgVTegDaBZHQJc4Bqi48U51fZQoaAZoCWgPQwhaLhudc5ViQJSGlFKUaBVN6ANoFkdAlzow/X5FgHV9lChoBmgJaA9DCC2Xjc55emVAlIaUUpRoFU3oA2gWR0CXOovfj0cwdX2UKGgGaAloD0MIui784PxeZUCUhpRSlGgVTegDaBZHQJc8xs67ulZ1fZQoaAZoCWgPQwgFb0ijAh5lQJSGlFKUaBVN6ANoFkdAlz1GGRFI/nV9lChoBmgJaA9DCCrltRI66mFAlIaUUpRoFU3oA2gWR0CXPXhYvFm4dX2UKGgGaAloD0MId2aC4VwnPUCUhpRSlGgVS9doFkdAl1gJooNNJ3V9lChoBmgJaA9DCFx0stR6OURAlIaUUpRoFUvJaBZHQJdfTZezD4x1fZQoaAZoCWgPQwjGpwAYz6hjQJSGlFKUaBVN6ANoFkdAl2VoraufVnV9lChoBmgJaA9DCHtJY7SOwGFAlIaUUpRoFU3oA2gWR0CXaEXizcASdX2UKGgGaAloD0MIQYNNnccRZECUhpRSlGgVTegDaBZHQJduKY5T6zp1fZQoaAZoCWgPQwgsuYrF7zNgQJSGlFKUaBVN6ANoFkdAl24uNo8IRnV9lChoBmgJaA9DCNIZGHlZswJAlIaUUpRoFUvcaBZHQJdyfA2ycCp1fZQoaAZoCWgPQwjVeOkmMbtWQJSGlFKUaBVN6ANoFkdAl3eAXIlt0nV9lChoBmgJaA9DCBtoPudur2JAlIaUUpRoFU3oA2gWR0CXhCkS26TXdX2UKGgGaAloD0MIXvHUIw2BXECUhpRSlGgVTegDaBZHQJeFwoKD0191fZQoaAZoCWgPQwg978aCwhVcQJSGlFKUaBVN6ANoFkdAl4ZgX2ugYnV9lChoBmgJaA9DCO5aQj7oM2ZAlIaUUpRoFU3oA2gWR0CXh2PTG5tndX2UKGgGaAloD0MIuReYFYpnXUCUhpRSlGgVTegDaBZHQJeHqWMS9M91fZQoaAZoCWgPQwjsSzYebB1uQJSGlFKUaBVNSwFoFkdAl4xrFfiPyXV9lChoBmgJaA9DCIo5CDpaOGRAlIaUUpRoFU3oA2gWR0CXjaB4Uvf1dX2UKGgGaAloD0MIkxgEVg5nYECUhpRSlGgVTegDaBZHQJeOIVQAMlV1fZQoaAZoCWgPQwh2NuSfGXdfQJSGlFKUaBVN6ANoFkdAl5F7RnezlnV9lChoBmgJaA9DCOcb0T3ru2NAlIaUUpRoFU3oA2gWR0CXkm06YE4edX2UKGgGaAloD0MIHo1D/a6DZUCUhpRSlGgVTegDaBZHQJevd4bCJoF1fZQoaAZoCWgPQwhPBkfJK2BlQJSGlFKUaBVN6ANoFkdAl7UVwLmZE3V9lChoBmgJaA9DCKUuGcfILWJAlIaUUpRoFU3oA2gWR0CXveZ+x4Y8dX2UKGgGaAloD0MI5geu8gROZ0CUhpRSlGgVTegDaBZHQJfFWqIacZt1fZQoaAZoCWgPQwg1uK0tvJ9lQJSGlFKUaBVN6ANoFkdAl8VhKg7HQ3V9lChoBmgJaA9DCILix5i7pllAlIaUUpRoFU3oA2gWR0CXzFgP3BYWdX2UKGgGaAloD0MIH7sLlJRtY0CUhpRSlGgVTegDaBZHQJfmeL74zrN1fZQoaAZoCWgPQwgIza57K3diQJSGlFKUaBVN6ANoFkdAl+gpAMUh3nV9lChoBmgJaA9DCPBS6pLxbWRAlIaUUpRoFU3oA2gWR0CX6NPTG5tndX2UKGgGaAloD0MIkBX8NsRtY0CUhpRSlGgVTegDaBZHQJfp8fT1CgN1fZQoaAZoCWgPQwiLTpZa7ypkQJSGlFKUaBVN6ANoFkdAl+o/IbOu73V9lChoBmgJaA9DCEChnj4Cs2NAlIaUUpRoFU3oA2gWR0CX79kAxSHedX2UKGgGaAloD0MIpKXydoQGYkCUhpRSlGgVTegDaBZHQJfw4YoAn2J1fZQoaAZoCWgPQwjfTiLCvwxnQJSGlFKUaBVN6ANoFkdAl/FWecx0uHV9lChoBmgJaA9DCHGqtTALy2NAlIaUUpRoFU3oA2gWR0CX9FKHfuTidX2UKGgGaAloD0MI1NUdi228Y0CUhpRSlGgVTegDaBZHQJf1LAj6eoV1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
matan-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0f6c3d998bbee73bb1801653ff9e76faba4a36d2de483deb2dc45da260ffd11
3
+ size 87929
matan-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bd3e437b0dfddd230be63f6dcc94739796805a9b3f91c93ac6f2e8ffbbc58cb
3
+ size 43393
matan-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
matan-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (240 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.33699917826436, "std_reward": 20.805761882888326, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T23:48:51.114677"}