matemato commited on
Commit
db38515
1 Parent(s): 6572a6e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 191.85 +/- 23.17
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7d010cb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7d010cb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7d010cc20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7d010ccb0>", "_build": "<function ActorCriticPolicy._build at 0x7fe7d010cd40>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7d010cdd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7d010ce60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7d010cef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7d010cf80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7d0112050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7d01120e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe7d0160660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663180979.21514, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0Bmj3DXRe6lkmdOncQazS8Y4O7/yK3uQAAgD8AAIA/4rOnvgXllTybVUu8ZtWvub+5or2cuZI7AACAPwAAgD8NQFU+SHXwunZ2hbpShdQ0w/obvFUToTcAAIA/AACAPwB0yrvDcVS6Ol58uCJJbTa064q7cnGPNwAAgD8AAIA/oDW5PkFkRD7uMqu758PhvS8QDz6YgkE8AAAAAAAAAADavK89UjDFuRXqUbr3fVK22LLEulo9czkAAIA/AACAP9r60732TFm6R0YVuXOBkDg04Ua6xqCCNgAAgD8AAIA/xiAqvqeXNz83hBm95AOJvh9JdL2DwTS9AAAAAAAAAAAaA/o9wussPtNQar5w2km+68bqvX7mYL4AAAAAAAAAAI3uxT1MDpM+NjQ4PCQbOL6jsg49tIigPAAAAAAAAAAAPd/2PoeVaD7d2/g96msZvov7pTyi3fs9AAAAAAAAAACAs0c9w70CunIYCzn5/AQ2rPwUOz2vIbgAAIA/AACAPzM5ob3DATq6SkGiO9oCGTd3yzw7Bvy5ugAAgD8AAIA/+rdPPg/rI7ziBoI6LxxOuOLPj71cqpi5AACAPwAAgD/aIIs9tux8PSWjlz3eM3e+BTnQPFqHyLwAAAAAAAAAAIDB1j62jQS+I47fOr+UCDvU+Gi+0xtQPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9vAHaibPUCUhpRSlIwBbJRL/4wBdJRHQIWrV7MPjGV1fZQoaAZoCWgPQwiEm4wqw/dfQJSGlFKUaBVN6ANoFkdAhazbdadMCnV9lChoBmgJaA9DCM/3U+Mli2NAlIaUUpRoFU3oA2gWR0CFroVgx8D0dX2UKGgGaAloD0MIlWOyuP8IXUCUhpRSlGgVTegDaBZHQIW1vxYq5LB1fZQoaAZoCWgPQwi+UMB2sDRjQJSGlFKUaBVN6ANoFkdAhbyOPNmlInV9lChoBmgJaA9DCJsb0xOWoCFAlIaUUpRoFUvaaBZHQIXD1gx8D0V1fZQoaAZoCWgPQwh2a5kMx5VeQJSGlFKUaBVN6ANoFkdAhdJf0mMOw3V9lChoBmgJaA9DCEW4yaiysmVAlIaUUpRoFU3oA2gWR0CF10b/ffoBdX2UKGgGaAloD0MIU0Kwqt5jYkCUhpRSlGgVTegDaBZHQIXbOndfsu51fZQoaAZoCWgPQwjZs+cyNTFmQJSGlFKUaBVN6ANoFkdAhiFeg13t8nV9lChoBmgJaA9DCF5nQ/6ZRWRAlIaUUpRoFU3oA2gWR0CGJnmcOLBLdX2UKGgGaAloD0MIp8r3jETkXECUhpRSlGgVTegDaBZHQIYqbynUDuB1fZQoaAZoCWgPQwhLHeT1YMphQJSGlFKUaBVN6ANoFkdAhjc6Kk2xZHV9lChoBmgJaA9DCC7kEdxIblxAlIaUUpRoFU3oA2gWR0CGPCKkVN5/dX2UKGgGaAloD0MI/z147dKG5j+UhpRSlGgVS8RoFkdAhjxeDvmYB3V9lChoBmgJaA9DCDARb51/UWNAlIaUUpRoFU3oA2gWR0CGPWnBtUGWdX2UKGgGaAloD0MI/yJozCSsSECUhpRSlGgVTegDaBZHQIZHb/6wdKd1fZQoaAZoCWgPQwiitg2joA9iQJSGlFKUaBVN6ANoFkdAhkpGseXAunV9lChoBmgJaA9DCNWzIJT3/F1AlIaUUpRoFU3oA2gWR0CGULE2pAD8dX2UKGgGaAloD0MIl3X/WIhPZkCUhpRSlGgVTegDaBZHQIZSRBcAzYV1fZQoaAZoCWgPQwjog2Vs6II8QJSGlFKUaBVLwGgWR0CGU8kB0ZFYdX2UKGgGaAloD0MIILjKE4iNYUCUhpRSlGgVTegDaBZHQIZZZt1p0wJ1fZQoaAZoCWgPQwhLeEKvP3kbwJSGlFKUaBVNJQFoFkdAhl9zYNAkcHV9lChoBmgJaA9DCLQFhNbDqF9AlIaUUpRoFU3oA2gWR0CGYBjXnQpndX2UKGgGaAloD0MIN94dGSsvZECUhpRSlGgVTegDaBZHQIZmnsiSq2l1fZQoaAZoCWgPQwhjCACOPZBgQJSGlFKUaBVN6ANoFkdAhnUwUQCjlHV9lChoBmgJaA9DCLjNVIjH92BAlIaUUpRoFU3oA2gWR0CGekRMewLWdX2UKGgGaAloD0MIgnNGlHYgYkCUhpRSlGgVTegDaBZHQIZ+ODxsl9l1fZQoaAZoCWgPQwgRGOsbmIwuQJSGlFKUaBVL9mgWR0CGhi/Dcdo4dX2UKGgGaAloD0MI8b2/QXtgY0CUhpRSlGgVTegDaBZHQIbJheHBUJh1fZQoaAZoCWgPQwjWOJuOAEZgQJSGlFKUaBVN6ANoFkdAhs1RmTTvzHV9lChoBmgJaA9DCGMK1jibTltAlIaUUpRoFU3oA2gWR0CG2Xe/pMYedX2UKGgGaAloD0MIogvqW+YsZUCUhpRSlGgVTegDaBZHQIbd0o8ZDRd1fZQoaAZoCWgPQwiAfXTqSollQJSGlFKUaBVN6ANoFkdAhuiAvUSZjXV9lChoBmgJaA9DCIQtdvsseWBAlIaUUpRoFU3oA2gWR0CG60M2m52AdX2UKGgGaAloD0MIecpqup7gXECUhpRSlGgVTegDaBZHQIbx5EQXhwV1fZQoaAZoCWgPQwjUSba6nJJaQJSGlFKUaBVN6ANoFkdAhvOMURFqjHV9lChoBmgJaA9DCAwCK4cWolxAlIaUUpRoFU3oA2gWR0CG9RHy3CsPdX2UKGgGaAloD0MI1TxH5DvTY0CUhpRSlGgVTegDaBZHQIb6/RJEpiJ1fZQoaAZoCWgPQwgn3ZbIhSFiQJSGlFKUaBVN6ANoFkdAhwFSm65G0HV9lChoBmgJaA9DCPj9mxcnd1pAlIaUUpRoFU3oA2gWR0CHAgK4QSSNdX2UKGgGaAloD0MIuM6/XfbsYECUhpRSlGgVTegDaBZHQIcXbpTuOS51fZQoaAZoCWgPQwhAMEeP3yNlQJSGlFKUaBVN6ANoFkdAhxxtozvZy3V9lChoBmgJaA9DCB+DFadaWx5AlIaUUpRoFUv1aBZHQIcgYWpIczZ1fZQoaAZoCWgPQwhAUG7bd6hhQJSGlFKUaBVN6ANoFkdAhyCJCa7Va3V9lChoBmgJaA9DCDNuaqD5+GJAlIaUUpRoFU3oA2gWR0CHKHOdGy5adX2UKGgGaAloD0MIEjElkug9J0CUhpRSlGgVS9xoFkdAh2HVeBxxUHV9lChoBmgJaA9DCGXequtQu2BAlIaUUpRoFU3oA2gWR0CHa4EbHZK4dX2UKGgGaAloD0MIS65i8ZuVX0CUhpRSlGgVTegDaBZHQIdvZMpPRAt1fZQoaAZoCWgPQwg3je21oGNiQJSGlFKUaBVN6ANoFkdAh3wIi9qUNnV9lChoBmgJaA9DCAUWwJQBCGBAlIaUUpRoFU3oA2gWR0CHgJEpiI+GdX2UKGgGaAloD0MI5l31gPnzYkCUhpRSlGgVTegDaBZHQIeLcxoIv8J1fZQoaAZoCWgPQwjHZkeq72xfQJSGlFKUaBVN6ANoFkdAh45MXSBsh3V9lChoBmgJaA9DCOKrHcU5ZlNAlIaUUpRoFU3oA2gWR0CHlJRTjvNNdX2UKGgGaAloD0MI9N+D166iYkCUhpRSlGgVTegDaBZHQIeWSVObiId1fZQoaAZoCWgPQwguOe6UDoFgQJSGlFKUaBVN6ANoFkdAh5fUlRgqmXV9lChoBmgJaA9DCDihEAGHeGBAlIaUUpRoFU3oA2gWR0CHnVSsr/bTdX2UKGgGaAloD0MIqaJ4lbWiV0CUhpRSlGgVTegDaBZHQIejQBDG96F1fZQoaAZoCWgPQwhUxVT6CYReQJSGlFKUaBVN6ANoFkdAh7j80tRNy3V9lChoBmgJaA9DCDfdskP8zmRAlIaUUpRoFU3oA2gWR0CHve/yoXKsdX2UKGgGaAloD0MIWi+GcqKtHsCUhpRSlGgVS+9oFkdAh8AdweeWfXV9lChoBmgJaA9DCKcFL/oKiWZAlIaUUpRoFU3oA2gWR0CHwa/FirksdX2UKGgGaAloD0MIq0GY2z0eZkCUhpRSlGgVTegDaBZHQIfJJgb6xgR1fZQoaAZoCWgPQwjkFYielIVgQJSGlFKUaBVN6ANoFkdAiAF6KDTScHV9lChoBmgJaA9DCMQkXMgjjVxAlIaUUpRoFU3oA2gWR0CICeHRkVesdX2UKGgGaAloD0MIXOUJhJ1aYECUhpRSlGgVTegDaBZHQIgNlhPTG5t1fZQoaAZoCWgPQwjz5nCt9vFbQJSGlFKUaBVN6ANoFkdAiBlvFefI0nV9lChoBmgJaA9DCIp3gCctsWVAlIaUUpRoFU3oA2gWR0CIHc1y/9HddX2UKGgGaAloD0MIYwlrY2xTYUCUhpRSlGgVTegDaBZHQIgo1yBClad1fZQoaAZoCWgPQwizfjMxXSxeQJSGlFKUaBVN6ANoFkdAiCvBXbM5fnV9lChoBmgJaA9DCFd4l4v402FAlIaUUpRoFU3oA2gWR0CIMkPXkHUudX2UKGgGaAloD0MI0QK0rebdY0CUhpRSlGgVTegDaBZHQIg0AKneizt1fZQoaAZoCWgPQwhxWYXNAE9iQJSGlFKUaBVN6ANoFkdAiDV+XAuZkXV9lChoBmgJaA9DCJ5DGapid1tAlIaUUpRoFU3oA2gWR0CIOz6a9bosdX2UKGgGaAloD0MI56kOuRnUYUCUhpRSlGgVTegDaBZHQIhZxvBJqZd1fZQoaAZoCWgPQwifdY2WA+0cwJSGlFKUaBVNEwFoFkdAiF8MSkCV8nV9lChoBmgJaA9DCG9+w0SD7V5AlIaUUpRoFU3oA2gWR0CIX1myxA0LdX2UKGgGaAloD0MIXfjB+dS7YECUhpRSlGgVTegDaBZHQIhhwVEd/8V1fZQoaAZoCWgPQwiqC3iZ4RNkQJSGlFKUaBVN6ANoFkdAiGNdy925hHV9lChoBmgJaA9DCBfUt8xpPWBAlIaUUpRoFU3oA2gWR0CIaqToMa0hdX2UKGgGaAloD0MIswqbAS5/YkCUhpRSlGgVTegDaBZHQIiivustCiR1fZQoaAZoCWgPQwghXAGFelJIQJSGlFKUaBVNCAFoFkdAiKRNuDSPVHV9lChoBmgJaA9DCI7r3/WZb2JAlIaUUpRoFU3oA2gWR0CIq5sUIsy0dX2UKGgGaAloD0MIU5eMYyQKW0CUhpRSlGgVTegDaBZHQIivS8pTdcl1fZQoaAZoCWgPQwjDRIMUvM9gQJSGlFKUaBVN6ANoFkdAiLwMQEpy63V9lChoBmgJaA9DCFK5iVqaS2NAlIaUUpRoFU3oA2gWR0CIwSpFTefqdX2UKGgGaAloD0MImE9WDFf3G0CUhpRSlGgVS+poFkdAiMu2hh6SknV9lChoBmgJaA9DCITzqWOV2WBAlIaUUpRoFU3oA2gWR0CIzbPhQ3xXdX2UKGgGaAloD0MIjpWYZ6X1ZECUhpRSlGgVTegDaBZHQIjREIVuaWp1fZQoaAZoCWgPQwhI/Io1XCpdQJSGlFKUaBVN6ANoFkdAiNhJudf9gnV9lChoBmgJaA9DCGdEaW9whmBAlIaUUpRoFU3oA2gWR0CI2jt/FzdUdX2UKGgGaAloD0MIJET5ghaeZUCUhpRSlGgVTegDaBZHQIjcDZxrBTJ1fZQoaAZoCWgPQwgQkgVM4No8QJSGlFKUaBVL52gWR0CI6oDXe3x4dX2UKGgGaAloD0MIL9tOWyNaRECUhpRSlGgVS9xoFkdAiO5j59E1EXV9lChoBmgJaA9DCOzBpPj4s2JAlIaUUpRoFU3oA2gWR0CJBj5oGpuNdX2UKGgGaAloD0MIZ5qw/WQURUCUhpRSlGgVS9ZoFkdAiQtnmRvFWHV9lChoBmgJaA9DCMVVZd8VgV1AlIaUUpRoFU3oA2gWR0CJDA8cuJ1rdX2UKGgGaAloD0MI/MdCdIj8ZUCUhpRSlGgVTegDaBZHQIkOqslsxfx1fZQoaAZoCWgPQwgw9IjR8+BjQJSGlFKUaBVN6ANoFkdAiRBj3VTaTXV9lChoBmgJaA9DCMKht3h4GWBAlIaUUpRoFU3oA2gWR0CJGHeiSJTEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
matemato.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ba5ca03247c90f045af7dc794dc67984f22191adbb912c128c122dbddaa3d4e
3
+ size 147135
matemato/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
matemato/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7d010cb00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7d010cb90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7d010cc20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7d010ccb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe7d010cd40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe7d010cdd0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7d010ce60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe7d010cef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7d010cf80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7d0112050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7d01120e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe7d0160660>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1663180979.21514,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0Bmj3DXRe6lkmdOncQazS8Y4O7/yK3uQAAgD8AAIA/4rOnvgXllTybVUu8ZtWvub+5or2cuZI7AACAPwAAgD8NQFU+SHXwunZ2hbpShdQ0w/obvFUToTcAAIA/AACAPwB0yrvDcVS6Ol58uCJJbTa064q7cnGPNwAAgD8AAIA/oDW5PkFkRD7uMqu758PhvS8QDz6YgkE8AAAAAAAAAADavK89UjDFuRXqUbr3fVK22LLEulo9czkAAIA/AACAP9r60732TFm6R0YVuXOBkDg04Ua6xqCCNgAAgD8AAIA/xiAqvqeXNz83hBm95AOJvh9JdL2DwTS9AAAAAAAAAAAaA/o9wussPtNQar5w2km+68bqvX7mYL4AAAAAAAAAAI3uxT1MDpM+NjQ4PCQbOL6jsg49tIigPAAAAAAAAAAAPd/2PoeVaD7d2/g96msZvov7pTyi3fs9AAAAAAAAAACAs0c9w70CunIYCzn5/AQ2rPwUOz2vIbgAAIA/AACAPzM5ob3DATq6SkGiO9oCGTd3yzw7Bvy5ugAAgD8AAIA/+rdPPg/rI7ziBoI6LxxOuOLPj71cqpi5AACAPwAAgD/aIIs9tux8PSWjlz3eM3e+BTnQPFqHyLwAAAAAAAAAAIDB1j62jQS+I47fOr+UCDvU+Gi+0xtQPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9vAHaibPUCUhpRSlIwBbJRL/4wBdJRHQIWrV7MPjGV1fZQoaAZoCWgPQwiEm4wqw/dfQJSGlFKUaBVN6ANoFkdAhazbdadMCnV9lChoBmgJaA9DCM/3U+Mli2NAlIaUUpRoFU3oA2gWR0CFroVgx8D0dX2UKGgGaAloD0MIlWOyuP8IXUCUhpRSlGgVTegDaBZHQIW1vxYq5LB1fZQoaAZoCWgPQwi+UMB2sDRjQJSGlFKUaBVN6ANoFkdAhbyOPNmlInV9lChoBmgJaA9DCJsb0xOWoCFAlIaUUpRoFUvaaBZHQIXD1gx8D0V1fZQoaAZoCWgPQwh2a5kMx5VeQJSGlFKUaBVN6ANoFkdAhdJf0mMOw3V9lChoBmgJaA9DCEW4yaiysmVAlIaUUpRoFU3oA2gWR0CF10b/ffoBdX2UKGgGaAloD0MIU0Kwqt5jYkCUhpRSlGgVTegDaBZHQIXbOndfsu51fZQoaAZoCWgPQwjZs+cyNTFmQJSGlFKUaBVN6ANoFkdAhiFeg13t8nV9lChoBmgJaA9DCF5nQ/6ZRWRAlIaUUpRoFU3oA2gWR0CGJnmcOLBLdX2UKGgGaAloD0MIp8r3jETkXECUhpRSlGgVTegDaBZHQIYqbynUDuB1fZQoaAZoCWgPQwhLHeT1YMphQJSGlFKUaBVN6ANoFkdAhjc6Kk2xZHV9lChoBmgJaA9DCC7kEdxIblxAlIaUUpRoFU3oA2gWR0CGPCKkVN5/dX2UKGgGaAloD0MI/z147dKG5j+UhpRSlGgVS8RoFkdAhjxeDvmYB3V9lChoBmgJaA9DCDARb51/UWNAlIaUUpRoFU3oA2gWR0CGPWnBtUGWdX2UKGgGaAloD0MI/yJozCSsSECUhpRSlGgVTegDaBZHQIZHb/6wdKd1fZQoaAZoCWgPQwiitg2joA9iQJSGlFKUaBVN6ANoFkdAhkpGseXAunV9lChoBmgJaA9DCNWzIJT3/F1AlIaUUpRoFU3oA2gWR0CGULE2pAD8dX2UKGgGaAloD0MIl3X/WIhPZkCUhpRSlGgVTegDaBZHQIZSRBcAzYV1fZQoaAZoCWgPQwjog2Vs6II8QJSGlFKUaBVLwGgWR0CGU8kB0ZFYdX2UKGgGaAloD0MIILjKE4iNYUCUhpRSlGgVTegDaBZHQIZZZt1p0wJ1fZQoaAZoCWgPQwhLeEKvP3kbwJSGlFKUaBVNJQFoFkdAhl9zYNAkcHV9lChoBmgJaA9DCLQFhNbDqF9AlIaUUpRoFU3oA2gWR0CGYBjXnQpndX2UKGgGaAloD0MIN94dGSsvZECUhpRSlGgVTegDaBZHQIZmnsiSq2l1fZQoaAZoCWgPQwhjCACOPZBgQJSGlFKUaBVN6ANoFkdAhnUwUQCjlHV9lChoBmgJaA9DCLjNVIjH92BAlIaUUpRoFU3oA2gWR0CGekRMewLWdX2UKGgGaAloD0MIgnNGlHYgYkCUhpRSlGgVTegDaBZHQIZ+ODxsl9l1fZQoaAZoCWgPQwgRGOsbmIwuQJSGlFKUaBVL9mgWR0CGhi/Dcdo4dX2UKGgGaAloD0MI8b2/QXtgY0CUhpRSlGgVTegDaBZHQIbJheHBUJh1fZQoaAZoCWgPQwjWOJuOAEZgQJSGlFKUaBVN6ANoFkdAhs1RmTTvzHV9lChoBmgJaA9DCGMK1jibTltAlIaUUpRoFU3oA2gWR0CG2Xe/pMYedX2UKGgGaAloD0MIogvqW+YsZUCUhpRSlGgVTegDaBZHQIbd0o8ZDRd1fZQoaAZoCWgPQwiAfXTqSollQJSGlFKUaBVN6ANoFkdAhuiAvUSZjXV9lChoBmgJaA9DCIQtdvsseWBAlIaUUpRoFU3oA2gWR0CG60M2m52AdX2UKGgGaAloD0MIecpqup7gXECUhpRSlGgVTegDaBZHQIbx5EQXhwV1fZQoaAZoCWgPQwjUSba6nJJaQJSGlFKUaBVN6ANoFkdAhvOMURFqjHV9lChoBmgJaA9DCAwCK4cWolxAlIaUUpRoFU3oA2gWR0CG9RHy3CsPdX2UKGgGaAloD0MI1TxH5DvTY0CUhpRSlGgVTegDaBZHQIb6/RJEpiJ1fZQoaAZoCWgPQwgn3ZbIhSFiQJSGlFKUaBVN6ANoFkdAhwFSm65G0HV9lChoBmgJaA9DCPj9mxcnd1pAlIaUUpRoFU3oA2gWR0CHAgK4QSSNdX2UKGgGaAloD0MIuM6/XfbsYECUhpRSlGgVTegDaBZHQIcXbpTuOS51fZQoaAZoCWgPQwhAMEeP3yNlQJSGlFKUaBVN6ANoFkdAhxxtozvZy3V9lChoBmgJaA9DCB+DFadaWx5AlIaUUpRoFUv1aBZHQIcgYWpIczZ1fZQoaAZoCWgPQwhAUG7bd6hhQJSGlFKUaBVN6ANoFkdAhyCJCa7Va3V9lChoBmgJaA9DCDNuaqD5+GJAlIaUUpRoFU3oA2gWR0CHKHOdGy5adX2UKGgGaAloD0MIEjElkug9J0CUhpRSlGgVS9xoFkdAh2HVeBxxUHV9lChoBmgJaA9DCGXequtQu2BAlIaUUpRoFU3oA2gWR0CHa4EbHZK4dX2UKGgGaAloD0MIS65i8ZuVX0CUhpRSlGgVTegDaBZHQIdvZMpPRAt1fZQoaAZoCWgPQwg3je21oGNiQJSGlFKUaBVN6ANoFkdAh3wIi9qUNnV9lChoBmgJaA9DCAUWwJQBCGBAlIaUUpRoFU3oA2gWR0CHgJEpiI+GdX2UKGgGaAloD0MI5l31gPnzYkCUhpRSlGgVTegDaBZHQIeLcxoIv8J1fZQoaAZoCWgPQwjHZkeq72xfQJSGlFKUaBVN6ANoFkdAh45MXSBsh3V9lChoBmgJaA9DCOKrHcU5ZlNAlIaUUpRoFU3oA2gWR0CHlJRTjvNNdX2UKGgGaAloD0MI9N+D166iYkCUhpRSlGgVTegDaBZHQIeWSVObiId1fZQoaAZoCWgPQwguOe6UDoFgQJSGlFKUaBVN6ANoFkdAh5fUlRgqmXV9lChoBmgJaA9DCDihEAGHeGBAlIaUUpRoFU3oA2gWR0CHnVSsr/bTdX2UKGgGaAloD0MIqaJ4lbWiV0CUhpRSlGgVTegDaBZHQIejQBDG96F1fZQoaAZoCWgPQwhUxVT6CYReQJSGlFKUaBVN6ANoFkdAh7j80tRNy3V9lChoBmgJaA9DCDfdskP8zmRAlIaUUpRoFU3oA2gWR0CHve/yoXKsdX2UKGgGaAloD0MIWi+GcqKtHsCUhpRSlGgVS+9oFkdAh8AdweeWfXV9lChoBmgJaA9DCKcFL/oKiWZAlIaUUpRoFU3oA2gWR0CHwa/FirksdX2UKGgGaAloD0MIq0GY2z0eZkCUhpRSlGgVTegDaBZHQIfJJgb6xgR1fZQoaAZoCWgPQwjkFYielIVgQJSGlFKUaBVN6ANoFkdAiAF6KDTScHV9lChoBmgJaA9DCMQkXMgjjVxAlIaUUpRoFU3oA2gWR0CICeHRkVesdX2UKGgGaAloD0MIXOUJhJ1aYECUhpRSlGgVTegDaBZHQIgNlhPTG5t1fZQoaAZoCWgPQwjz5nCt9vFbQJSGlFKUaBVN6ANoFkdAiBlvFefI0nV9lChoBmgJaA9DCIp3gCctsWVAlIaUUpRoFU3oA2gWR0CIHc1y/9HddX2UKGgGaAloD0MIYwlrY2xTYUCUhpRSlGgVTegDaBZHQIgo1yBClad1fZQoaAZoCWgPQwizfjMxXSxeQJSGlFKUaBVN6ANoFkdAiCvBXbM5fnV9lChoBmgJaA9DCFd4l4v402FAlIaUUpRoFU3oA2gWR0CIMkPXkHUudX2UKGgGaAloD0MI0QK0rebdY0CUhpRSlGgVTegDaBZHQIg0AKneizt1fZQoaAZoCWgPQwhxWYXNAE9iQJSGlFKUaBVN6ANoFkdAiDV+XAuZkXV9lChoBmgJaA9DCJ5DGapid1tAlIaUUpRoFU3oA2gWR0CIOz6a9bosdX2UKGgGaAloD0MI56kOuRnUYUCUhpRSlGgVTegDaBZHQIhZxvBJqZd1fZQoaAZoCWgPQwifdY2WA+0cwJSGlFKUaBVNEwFoFkdAiF8MSkCV8nV9lChoBmgJaA9DCG9+w0SD7V5AlIaUUpRoFU3oA2gWR0CIX1myxA0LdX2UKGgGaAloD0MIXfjB+dS7YECUhpRSlGgVTegDaBZHQIhhwVEd/8V1fZQoaAZoCWgPQwiqC3iZ4RNkQJSGlFKUaBVN6ANoFkdAiGNdy925hHV9lChoBmgJaA9DCBfUt8xpPWBAlIaUUpRoFU3oA2gWR0CIaqToMa0hdX2UKGgGaAloD0MIswqbAS5/YkCUhpRSlGgVTegDaBZHQIiivustCiR1fZQoaAZoCWgPQwghXAGFelJIQJSGlFKUaBVNCAFoFkdAiKRNuDSPVHV9lChoBmgJaA9DCI7r3/WZb2JAlIaUUpRoFU3oA2gWR0CIq5sUIsy0dX2UKGgGaAloD0MIU5eMYyQKW0CUhpRSlGgVTegDaBZHQIivS8pTdcl1fZQoaAZoCWgPQwjDRIMUvM9gQJSGlFKUaBVN6ANoFkdAiLwMQEpy63V9lChoBmgJaA9DCFK5iVqaS2NAlIaUUpRoFU3oA2gWR0CIwSpFTefqdX2UKGgGaAloD0MImE9WDFf3G0CUhpRSlGgVS+poFkdAiMu2hh6SknV9lChoBmgJaA9DCITzqWOV2WBAlIaUUpRoFU3oA2gWR0CIzbPhQ3xXdX2UKGgGaAloD0MIjpWYZ6X1ZECUhpRSlGgVTegDaBZHQIjREIVuaWp1fZQoaAZoCWgPQwhI/Io1XCpdQJSGlFKUaBVN6ANoFkdAiNhJudf9gnV9lChoBmgJaA9DCGdEaW9whmBAlIaUUpRoFU3oA2gWR0CI2jt/FzdUdX2UKGgGaAloD0MIJET5ghaeZUCUhpRSlGgVTegDaBZHQIjcDZxrBTJ1fZQoaAZoCWgPQwgQkgVM4No8QJSGlFKUaBVL52gWR0CI6oDXe3x4dX2UKGgGaAloD0MIL9tOWyNaRECUhpRSlGgVS9xoFkdAiO5j59E1EXV9lChoBmgJaA9DCOzBpPj4s2JAlIaUUpRoFU3oA2gWR0CJBj5oGpuNdX2UKGgGaAloD0MIZ5qw/WQURUCUhpRSlGgVS9ZoFkdAiQtnmRvFWHV9lChoBmgJaA9DCMVVZd8VgV1AlIaUUpRoFU3oA2gWR0CJDA8cuJ1rdX2UKGgGaAloD0MI/MdCdIj8ZUCUhpRSlGgVTegDaBZHQIkOqslsxfx1fZQoaAZoCWgPQwgw9IjR8+BjQJSGlFKUaBVN6ANoFkdAiRBj3VTaTXV9lChoBmgJaA9DCMKht3h4GWBAlIaUUpRoFU3oA2gWR0CJGHeiSJTEdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
matemato/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d02551fe1487e439a8b7bd5c79c49adb97f892e01c7a367c2fb55e58ea88b19
3
+ size 87865
matemato/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91c2892f8517ad7e323e730a40739ef16fe6568fa475ecbd92c94d9367bcb25d
3
+ size 43201
matemato/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
matemato/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (251 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 191.8545768493894, "std_reward": 23.16541383912032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-14T18:57:48.725699"}