mateoluksenberg
commited on
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: microsoft/dit-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: Seed_Classifier_V2
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.0
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# Seed_Classifier_V2
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.6985
|
36 |
+
- Accuracy: 0.0
|
37 |
+
- Weighted f1: 0.0
|
38 |
+
- Micro f1: 0.0
|
39 |
+
- Macro f1: 0.0
|
40 |
+
- Weighted recall: 0.0
|
41 |
+
- Micro recall: 0.0
|
42 |
+
- Macro recall: 0.0
|
43 |
+
- Weighted precision: 0.0
|
44 |
+
- Micro precision: 0.0
|
45 |
+
- Macro precision: 0.0
|
46 |
+
|
47 |
+
## Model description
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Intended uses & limitations
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training and evaluation data
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training procedure
|
60 |
+
|
61 |
+
### Training hyperparameters
|
62 |
+
|
63 |
+
The following hyperparameters were used during training:
|
64 |
+
- learning_rate: 5e-05
|
65 |
+
- train_batch_size: 32
|
66 |
+
- eval_batch_size: 32
|
67 |
+
- seed: 42
|
68 |
+
- gradient_accumulation_steps: 4
|
69 |
+
- total_train_batch_size: 128
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- lr_scheduler_warmup_ratio: 0.1
|
73 |
+
- num_epochs: 18
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
79 |
+
| 0.3829 | 1.0 | 1 | 1.0584 | 0.5 | 0.3333 | 0.5 | 0.3333 | 0.5 | 0.5 | 0.5 | 0.25 | 0.5 | 0.25 |
|
80 |
+
| 0.3829 | 2.0 | 2 | 1.2877 | 0.25 | 0.2 | 0.25 | 0.2 | 0.25 | 0.25 | 0.25 | 0.1667 | 0.25 | 0.1667 |
|
81 |
+
| 0.3829 | 3.0 | 3 | 2.2985 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
82 |
+
| 0.3829 | 4.0 | 4 | 2.4998 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
83 |
+
| 0.3829 | 5.0 | 5 | 2.2230 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
84 |
+
| 0.3829 | 6.0 | 6 | 1.9467 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
85 |
+
| 0.3829 | 7.0 | 7 | 1.7201 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
86 |
+
| 0.3628 | 8.0 | 8 | 1.5736 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
87 |
+
| 0.3628 | 9.0 | 9 | 1.5412 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
88 |
+
| 0.3628 | 10.0 | 10 | 1.5484 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
89 |
+
| 0.3628 | 11.0 | 11 | 1.5762 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
90 |
+
| 0.3628 | 12.0 | 12 | 1.5907 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
91 |
+
| 0.3628 | 13.0 | 13 | 1.6231 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
92 |
+
| 0.3628 | 14.0 | 14 | 1.6462 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
93 |
+
| 0.3628 | 15.0 | 15 | 1.6710 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
94 |
+
| 0.3175 | 16.0 | 16 | 1.6883 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
95 |
+
| 0.3175 | 17.0 | 17 | 1.6994 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
96 |
+
| 0.3175 | 18.0 | 18 | 1.6985 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.44.2
|
102 |
+
- Pytorch 2.4.1+cu121
|
103 |
+
- Datasets 3.0.0
|
104 |
+
- Tokenizers 0.19.1
|