Create pipeline.py
Browse files- pipeline.py +36 -0
pipeline.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from huggingface_hub import from_pretrained_fastai
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
class ImageSegmentationPipeline():
|
9 |
+
def __init__(self, model_id: str):
|
10 |
+
self.model = from_pretrained_fastai(model_id)
|
11 |
+
|
12 |
+
# Obtain labels
|
13 |
+
self.id2label = self.model.dls.vocab
|
14 |
+
|
15 |
+
# Return at most the top 5 predicted classes
|
16 |
+
self.top_k = 5
|
17 |
+
|
18 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
19 |
+
"""
|
20 |
+
Args:
|
21 |
+
inputs (:obj:`PIL.Image`):
|
22 |
+
The raw image representation as PIL.
|
23 |
+
No transformation made whatsoever from the input. Make all necessary transformations here.
|
24 |
+
Return:
|
25 |
+
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
26 |
+
It is preferred if the returned list is in decreasing `score` order
|
27 |
+
"""
|
28 |
+
# FastAI expects a np array, not a PIL Image.
|
29 |
+
_, _, preds = self.model.predict(np.array(inputs))
|
30 |
+
preds = preds.tolist()
|
31 |
+
|
32 |
+
labels = [
|
33 |
+
{"label": str(self.id2label[i]), "score": float(preds[i])}
|
34 |
+
for i in range(len(preds))
|
35 |
+
]
|
36 |
+
return sorted(labels, key=lambda tup: tup["score"], reverse=True)[: self.top_k]
|