Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1777.48 +/- 195.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13d1584a9491e732c6b2123fada659a5e41974b9d8f336e76d8a26f7993d4da4
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f37af9d8040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37af9d80d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37af9d8160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37af9d81f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f37af9d8280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f37af9d8310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37af9d83a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37af9d8430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f37af9d84c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37af9d8550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37af9d85e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37af9d8670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f37af9cde40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675108771505975545,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMrHHD9MFpC+UyYLP5NTlD/2s/A/cw9yv9CBkT6YQqS/tRGbPj+6YD+1lso/+lIBP51R0j6lHze/eUFMP9Q7CL8zDB8/9FIvvxTBHT56PKs/DRwYv3RVcj7Pc72+xQ09wFndhb/3V+O/4K4dP0DeiL/YJk4/cEhHP0S4tT6cx1I/+1NAv97RpT/8tju9SU6svx4EGj+xatS9ddu3P8/PjL5FAqK//q3gPJqhC7/r3SI+OiOBvwhMe79MuSo/dh4OvoGQsb6mx1i+vi9Sv0P3oT7ayHQ/XiIQP+CuHT9A3oi/54+nPYr9oT8xy569fRi/vMf/5D/5Bdw+qmmQv/9RqL5vgAQ/97KRP1Uqgb6P6DY/7Pr9P/dzcbtqMmQ/+GekvIT5pT1piKS/HuT/vXUkwT9WqBm/rDD1Pdj6hD9syZ+/2sh0P14iED8nz8+/smlvP8kSWT8RkuM//91xvyqaij9FVsy+3qukvx9PYT6Vejq/mLCAPozupL/oMr4/VjbYv+3kjL8MGlI/C8HwvgUjkL+536y/UcLPPjAdGz8zfgK/KYaMPoQlDEDIXpS+FNzeP9rIdD/3V+O/J8/Pv0DeiL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAGDZk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmSWWPAAAAABJGNq/AAAAACOpwT0AAAAABTz5PwAAAABGFzK8AAAAAFaL/D8AAAAAwcUHvgAAAADtt/K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr9t1NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAgaYrwAAAAAhT3fvwAAAAC3ULo9AAAAACZX/T8AAAAA2/dcvQAAAABZg+E/AAAAAM9I3L0AAAAAv3/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIkknzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAQsWm9AAAAAEC9/L8AAAAAExtkPQAAAAACqPw/AAAAANMRIL0AAAAA91nZPwAAAABG4nc9AAAAAOoz378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8Fj61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtFQNvgAAAABf9++/AAAAACsq970AAAAAVb3uPwAAAADlMDS8AAAAANHs7D8AAAAAyLFCPQAAAAChTOm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJx6fUMG5c2MAWyUTegDjAF0lEdAp0XAtapxWHV9lChoBkdAnbgJ8WsRx2gHTegDaAhHQKdHZOM2m511fZQoaAZHQJ1Z7voePq9oB03oA2gIR0CnSICsOoYOdX2UKGgGR0CgZWBjOLR8aAdN6ANoCEdAp0iun62v0XV9lChoBkdAmxnCcLBsRGgHTegDaAhHQKdR7wyZa3Z1fZQoaAZHQKCfHFQ2uPpoB03oA2gIR0CnU4sIVuaXdX2UKGgGR0Ca2e4WDYh/aAdN6ANoCEdAp1SylJpWWHV9lChoBkdAn3QlzMibD2gHTegDaAhHQKdU4xQBPsR1fZQoaAZHQJ8FJRGc4HZoB03oA2gIR0CnXf/WDpTudX2UKGgGR0CfZCrleWv9aAdN6ANoCEdAp1+Gmk30gHV9lChoBkdAm8qo//vOQmgHTegDaAhHQKdgoFlkH2R1fZQoaAZHQJpejNLUTctoB03oA2gIR0CnYM/En9ehdX2UKGgGR0Ccr0PmPo3aaAdN6ANoCEdAp2nvYpUgjnV9lChoBkdAnKIOCsfaH2gHTegDaAhHQKdrh/JeVs11fZQoaAZHQJ0DJzU7SzBoB03oA2gIR0CnbJhYmsvJdX2UKGgGR0CbSj54nndPaAdN6ANoCEdAp2zHyXlbNnV9lChoBkdAnzeL961LJ2gHTegDaAhHQKd2CuK4x1x1fZQoaAZHQJ4QlO58Sf1oB03oA2gIR0Cnd6LhzeXSdX2UKGgGR0CenY2i+L3saAdN6ANoCEdAp3i1+Zw4sHV9lChoBkdAg9IoqCpWFWgHTegDaAhHQKd45jghr311fZQoaAZHQJ49elhw2l5oB03oA2gIR0CnghNFSbYsdX2UKGgGR0Cgv1sAFPi2aAdN6ANoCEdAp4Os5MlC1XV9lChoBkdAoIgsrI5o5GgHTegDaAhHQKeEyhePaL51fZQoaAZHQJ72Ro6CDmNoB03oA2gIR0CnhPovSMLndX2UKGgGR0CgL5nJ1aGIaAdN6ANoCEdAp440E1VHWnV9lChoBkdAobNA97ngYWgHTegDaAhHQKeP0G1QZXN1fZQoaAZHQJ6ukNOM2m5oB03oA2gIR0CnkPue8PFvdX2UKGgGR0CbcrtkWhysaAdN6ANoCEdAp5EskyDZlHV9lChoBkdAoO6njQzDXWgHTegDaAhHQKeakpFTeft1fZQoaAZHQJmar4SHuZ1oB03oA2gIR0CnnDzAN5MUdX2UKGgGR0CdXxenQ6ZIaAdN6ANoCEdAp51NUQ04znV9lChoBkdAk9qLl3hXKmgHTegDaAhHQKedeZXMhX91fZQoaAZHQJJGhTCLuQZoB03oA2gIR0Cnpr9LHuJDdX2UKGgGR0CTUZxW1c+raAdN6ANoCEdAp6hu9Jz1b3V9lChoBkdAn34Qb2lEZ2gHTegDaAhHQKepghIOH311fZQoaAZHQKDNJ2exwAFoB03oA2gIR0CnqbZSeiBYdX2UKGgGR0CcViq//NqyaAdN6ANoCEdAp7MIQg9vCXV9lChoBkdAnB0Y0Q9RrWgHTegDaAhHQKe0pGvwEyN1fZQoaAZHQJgNEO7QLNRoB03oA2gIR0CntbzySV4YdX2UKGgGR0CbXkeTV2A5aAdN6ANoCEdAp7XrP+n623V9lChoBkdAnngTBl+VkmgHTegDaAhHQKe/ROO801t1fZQoaAZHQJi3ZiBoVVRoB03oA2gIR0CnwOljd56ddX2UKGgGR0CbfawW3z+WaAdN6ANoCEdAp8IB5X2du3V9lChoBkdAnslUbPyCnWgHTegDaAhHQKfCNYp2ECh1fZQoaAZHQKAEiQOnVG1oB03oA2gIR0Cny31Iqbz9dX2UKGgGR0CgP14Ia99MaAdN6ANoCEdAp80ngWJrL3V9lChoBkdAmsfSeAd4mmgHTegDaAhHQKfOTXFLnLd1fZQoaAZHQJ/6yh11W81oB03oA2gIR0CnznwVsUItdX2UKGgGR0CaVWYiPhhqaAdN6ANoCEdAp9erYbsF+3V9lChoBkdAnr14sunMuGgHTegDaAhHQKfZTgx8D0V1fZQoaAZHQJyIT3QD3dtoB03oA2gIR0Cn2mFuNxVAdX2UKGgGR0CgUN51V5ryaAdN6ANoCEdAp9qPNFBppXV9lChoBkdAoL93solUqGgHTegDaAhHQKfjqffXPJJ1fZQoaAZHQJ/U0h5gPVdoB03oA2gIR0Cn5UMTnJT3dX2UKGgGR0CgkbQ8W9DhaAdN6ANoCEdAp+ZP1nM+vHV9lChoBkdAkMZjxb0OE2gHTegDaAhHQKfmgnpjc211fZQoaAZHQJOtecwxnFpoB03oA2gIR0Cn76nogV45dX2UKGgGR0Cfrda0QbuMaAdN6ANoCEdAp/E63uuzQnV9lChoBkdAnVAwf6oES2gHTegDaAhHQKfyQUTL4et1fZQoaAZHQJ9AF4TsY2toB03oA2gIR0Cn8nAQYk3TdX2UKGgGR0CZU8bh3qzJaAdN6ANoCEdAp/vNI065oXV9lChoBkdAf5W9zfaYeGgHTegDaAhHQKf9ekMTewd1fZQoaAZHQJY567lJYkpoB03oA2gIR0Cn/qv5P/JedX2UKGgGR0B5+zDqGDcuaAdN6ANoCEdAp/7YTRIBinV9lChoBkdAmfZoGIKtxWgHTegDaAhHQKgH/Kp1ifB1fZQoaAZHQJ1gH0nPVutoB03oA2gIR0CoCaBnzxwydX2UKGgGR0CZL2OLBKtgaAdN6ANoCEdAqAq+6Zpi7XV9lChoBkdAnsc5vDP4VWgHTegDaAhHQKgK7PEbYK91fZQoaAZHQJkBWdEsrd5oB03oA2gIR0CoFDbkGRmsdX2UKGgGR0CSGBr7wazeaAdN6ANoCEdAqBXKuU2UCHV9lChoBkdAk963okiUxGgHTegDaAhHQKgW4ClJpWV1fZQoaAZHQJHh4mTkhidoB03oA2gIR0CoFxEo4MnadX2UKGgGR0CQMEjvd/KAaAdN6ANoCEdAqCBvZoPCmHV9lChoBkdAlwMWd3B55mgHTegDaAhHQKgiANb1RLt1fZQoaAZHQJczyMR6F/RoB03oA2gIR0CoIxNgSeyzdX2UKGgGR0CaJUmSQo1DaAdN6ANoCEdAqCM/P5YYBXV9lChoBkdAlQ54FzMibGgHTegDaAhHQKgsdWuHN5d1fZQoaAZHQJfw1cyFfzBoB03oA2gIR0CoLggCwKSgdX2UKGgGR0CWOnf0VafSaAdN6ANoCEdAqC8WPtD2J3V9lChoBkdAnHydKmKqGWgHTegDaAhHQKgvQS6lLvl1fZQoaAZHQJ4GqUX531VoB03oA2gIR0CoOMoRAbADdX2UKGgGR0CSFkMd92HMaAdN6ANoCEdAqDtOiYb833V9lChoBkdAnCfqWTot+WgHTegDaAhHQKg9DWRRuTB1fZQoaAZHQH5F3y7PIGRoB03oA2gIR0CoPVm+TNdJdX2UKGgGR0CgOInhS9/SaAdN6ANoCEdAqEjp4KQaJnV9lChoBkdAnJm2fChvi2gHTegDaAhHQKhKfgv114h1fZQoaAZHQJqd2vZAY51oB03oA2gIR0CoS41KPGQ0dX2UKGgGR0Cg0dbxusLfaAdN6ANoCEdAqEu5j+aScXV9lChoBkdAltWRJI1+AmgHTegDaAhHQKhU7dRBNVR1fZQoaAZHQJzpDZGrjo9oB03oA2gIR0CoVn44ACGOdX2UKGgGR0CgUV0C7sfJaAdN6ANoCEdAqFeJvP1L8XV9lChoBkdAnH9P+sHSnmgHTegDaAhHQKhXt3xFy7x1fZQoaAZHQJ31TeBQN1BoB03oA2gIR0CoYPOQ6p5vdX2UKGgGR0CTNcPluFYdaAdN6ANoCEdAqGKYh2W6b3V9lChoBkdAm2F3Zwn6VWgHTegDaAhHQKhjpuvUz9F1fZQoaAZHQJ6edjPOY6ZoB03oA2gIR0CoY9rqt5lfdX2UKGgGR0CfEWrPt2LYaAdN6ANoCEdAqG0FEiMYM3V9lChoBkdAmoLXjdYW+GgHTegDaAhHQKhun/2kBS11fZQoaAZHQJja0LiMo+hoB03oA2gIR0Cob6r8JlasdX2UKGgGR0CQ9ZZLqUu+aAdN6ANoCEdAqG/bb5/LDHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed625e41355200a3656931b6c0cfd35dd2e7dfd0dd5c738bcc1be390d065293d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04297932247dc3ffa2be5fb5aba183cb06d3c4067c71730c5878d4c30c127504
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37af9d8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37af9d80d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37af9d8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37af9d81f0>", "_build": "<function ActorCriticPolicy._build at 0x7f37af9d8280>", "forward": "<function ActorCriticPolicy.forward at 0x7f37af9d8310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37af9d83a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37af9d8430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f37af9d84c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37af9d8550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37af9d85e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37af9d8670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f37af9cde40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675108771505975545, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMrHHD9MFpC+UyYLP5NTlD/2s/A/cw9yv9CBkT6YQqS/tRGbPj+6YD+1lso/+lIBP51R0j6lHze/eUFMP9Q7CL8zDB8/9FIvvxTBHT56PKs/DRwYv3RVcj7Pc72+xQ09wFndhb/3V+O/4K4dP0DeiL/YJk4/cEhHP0S4tT6cx1I/+1NAv97RpT/8tju9SU6svx4EGj+xatS9ddu3P8/PjL5FAqK//q3gPJqhC7/r3SI+OiOBvwhMe79MuSo/dh4OvoGQsb6mx1i+vi9Sv0P3oT7ayHQ/XiIQP+CuHT9A3oi/54+nPYr9oT8xy569fRi/vMf/5D/5Bdw+qmmQv/9RqL5vgAQ/97KRP1Uqgb6P6DY/7Pr9P/dzcbtqMmQ/+GekvIT5pT1piKS/HuT/vXUkwT9WqBm/rDD1Pdj6hD9syZ+/2sh0P14iED8nz8+/smlvP8kSWT8RkuM//91xvyqaij9FVsy+3qukvx9PYT6Vejq/mLCAPozupL/oMr4/VjbYv+3kjL8MGlI/C8HwvgUjkL+536y/UcLPPjAdGz8zfgK/KYaMPoQlDEDIXpS+FNzeP9rIdD/3V+O/J8/Pv0DeiL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAGDZk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmSWWPAAAAABJGNq/AAAAACOpwT0AAAAABTz5PwAAAABGFzK8AAAAAFaL/D8AAAAAwcUHvgAAAADtt/K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr9t1NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAgaYrwAAAAAhT3fvwAAAAC3ULo9AAAAACZX/T8AAAAA2/dcvQAAAABZg+E/AAAAAM9I3L0AAAAAv3/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIkknzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAQsWm9AAAAAEC9/L8AAAAAExtkPQAAAAACqPw/AAAAANMRIL0AAAAA91nZPwAAAABG4nc9AAAAAOoz378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8Fj61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtFQNvgAAAABf9++/AAAAACsq970AAAAAVb3uPwAAAADlMDS8AAAAANHs7D8AAAAAyLFCPQAAAAChTOm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJx6fUMG5c2MAWyUTegDjAF0lEdAp0XAtapxWHV9lChoBkdAnbgJ8WsRx2gHTegDaAhHQKdHZOM2m511fZQoaAZHQJ1Z7voePq9oB03oA2gIR0CnSICsOoYOdX2UKGgGR0CgZWBjOLR8aAdN6ANoCEdAp0iun62v0XV9lChoBkdAmxnCcLBsRGgHTegDaAhHQKdR7wyZa3Z1fZQoaAZHQKCfHFQ2uPpoB03oA2gIR0CnU4sIVuaXdX2UKGgGR0Ca2e4WDYh/aAdN6ANoCEdAp1SylJpWWHV9lChoBkdAn3QlzMibD2gHTegDaAhHQKdU4xQBPsR1fZQoaAZHQJ8FJRGc4HZoB03oA2gIR0CnXf/WDpTudX2UKGgGR0CfZCrleWv9aAdN6ANoCEdAp1+Gmk30gHV9lChoBkdAm8qo//vOQmgHTegDaAhHQKdgoFlkH2R1fZQoaAZHQJpejNLUTctoB03oA2gIR0CnYM/En9ehdX2UKGgGR0Ccr0PmPo3aaAdN6ANoCEdAp2nvYpUgjnV9lChoBkdAnKIOCsfaH2gHTegDaAhHQKdrh/JeVs11fZQoaAZHQJ0DJzU7SzBoB03oA2gIR0CnbJhYmsvJdX2UKGgGR0CbSj54nndPaAdN6ANoCEdAp2zHyXlbNnV9lChoBkdAnzeL961LJ2gHTegDaAhHQKd2CuK4x1x1fZQoaAZHQJ4QlO58Sf1oB03oA2gIR0Cnd6LhzeXSdX2UKGgGR0CenY2i+L3saAdN6ANoCEdAp3i1+Zw4sHV9lChoBkdAg9IoqCpWFWgHTegDaAhHQKd45jghr311fZQoaAZHQJ49elhw2l5oB03oA2gIR0CnghNFSbYsdX2UKGgGR0Cgv1sAFPi2aAdN6ANoCEdAp4Os5MlC1XV9lChoBkdAoIgsrI5o5GgHTegDaAhHQKeEyhePaL51fZQoaAZHQJ72Ro6CDmNoB03oA2gIR0CnhPovSMLndX2UKGgGR0CgL5nJ1aGIaAdN6ANoCEdAp440E1VHWnV9lChoBkdAobNA97ngYWgHTegDaAhHQKeP0G1QZXN1fZQoaAZHQJ6ukNOM2m5oB03oA2gIR0CnkPue8PFvdX2UKGgGR0CbcrtkWhysaAdN6ANoCEdAp5EskyDZlHV9lChoBkdAoO6njQzDXWgHTegDaAhHQKeakpFTeft1fZQoaAZHQJmar4SHuZ1oB03oA2gIR0CnnDzAN5MUdX2UKGgGR0CdXxenQ6ZIaAdN6ANoCEdAp51NUQ04znV9lChoBkdAk9qLl3hXKmgHTegDaAhHQKedeZXMhX91fZQoaAZHQJJGhTCLuQZoB03oA2gIR0Cnpr9LHuJDdX2UKGgGR0CTUZxW1c+raAdN6ANoCEdAp6hu9Jz1b3V9lChoBkdAn34Qb2lEZ2gHTegDaAhHQKepghIOH311fZQoaAZHQKDNJ2exwAFoB03oA2gIR0CnqbZSeiBYdX2UKGgGR0CcViq//NqyaAdN6ANoCEdAp7MIQg9vCXV9lChoBkdAnB0Y0Q9RrWgHTegDaAhHQKe0pGvwEyN1fZQoaAZHQJgNEO7QLNRoB03oA2gIR0CntbzySV4YdX2UKGgGR0CbXkeTV2A5aAdN6ANoCEdAp7XrP+n623V9lChoBkdAnngTBl+VkmgHTegDaAhHQKe/ROO801t1fZQoaAZHQJi3ZiBoVVRoB03oA2gIR0CnwOljd56ddX2UKGgGR0CbfawW3z+WaAdN6ANoCEdAp8IB5X2du3V9lChoBkdAnslUbPyCnWgHTegDaAhHQKfCNYp2ECh1fZQoaAZHQKAEiQOnVG1oB03oA2gIR0Cny31Iqbz9dX2UKGgGR0CgP14Ia99MaAdN6ANoCEdAp80ngWJrL3V9lChoBkdAmsfSeAd4mmgHTegDaAhHQKfOTXFLnLd1fZQoaAZHQJ/6yh11W81oB03oA2gIR0CnznwVsUItdX2UKGgGR0CaVWYiPhhqaAdN6ANoCEdAp9erYbsF+3V9lChoBkdAnr14sunMuGgHTegDaAhHQKfZTgx8D0V1fZQoaAZHQJyIT3QD3dtoB03oA2gIR0Cn2mFuNxVAdX2UKGgGR0CgUN51V5ryaAdN6ANoCEdAp9qPNFBppXV9lChoBkdAoL93solUqGgHTegDaAhHQKfjqffXPJJ1fZQoaAZHQJ/U0h5gPVdoB03oA2gIR0Cn5UMTnJT3dX2UKGgGR0CgkbQ8W9DhaAdN6ANoCEdAp+ZP1nM+vHV9lChoBkdAkMZjxb0OE2gHTegDaAhHQKfmgnpjc211fZQoaAZHQJOtecwxnFpoB03oA2gIR0Cn76nogV45dX2UKGgGR0Cfrda0QbuMaAdN6ANoCEdAp/E63uuzQnV9lChoBkdAnVAwf6oES2gHTegDaAhHQKfyQUTL4et1fZQoaAZHQJ9AF4TsY2toB03oA2gIR0Cn8nAQYk3TdX2UKGgGR0CZU8bh3qzJaAdN6ANoCEdAp/vNI065oXV9lChoBkdAf5W9zfaYeGgHTegDaAhHQKf9ekMTewd1fZQoaAZHQJY567lJYkpoB03oA2gIR0Cn/qv5P/JedX2UKGgGR0B5+zDqGDcuaAdN6ANoCEdAp/7YTRIBinV9lChoBkdAmfZoGIKtxWgHTegDaAhHQKgH/Kp1ifB1fZQoaAZHQJ1gH0nPVutoB03oA2gIR0CoCaBnzxwydX2UKGgGR0CZL2OLBKtgaAdN6ANoCEdAqAq+6Zpi7XV9lChoBkdAnsc5vDP4VWgHTegDaAhHQKgK7PEbYK91fZQoaAZHQJkBWdEsrd5oB03oA2gIR0CoFDbkGRmsdX2UKGgGR0CSGBr7wazeaAdN6ANoCEdAqBXKuU2UCHV9lChoBkdAk963okiUxGgHTegDaAhHQKgW4ClJpWV1fZQoaAZHQJHh4mTkhidoB03oA2gIR0CoFxEo4MnadX2UKGgGR0CQMEjvd/KAaAdN6ANoCEdAqCBvZoPCmHV9lChoBkdAlwMWd3B55mgHTegDaAhHQKgiANb1RLt1fZQoaAZHQJczyMR6F/RoB03oA2gIR0CoIxNgSeyzdX2UKGgGR0CaJUmSQo1DaAdN6ANoCEdAqCM/P5YYBXV9lChoBkdAlQ54FzMibGgHTegDaAhHQKgsdWuHN5d1fZQoaAZHQJfw1cyFfzBoB03oA2gIR0CoLggCwKSgdX2UKGgGR0CWOnf0VafSaAdN6ANoCEdAqC8WPtD2J3V9lChoBkdAnHydKmKqGWgHTegDaAhHQKgvQS6lLvl1fZQoaAZHQJ4GqUX531VoB03oA2gIR0CoOMoRAbADdX2UKGgGR0CSFkMd92HMaAdN6ANoCEdAqDtOiYb833V9lChoBkdAnCfqWTot+WgHTegDaAhHQKg9DWRRuTB1fZQoaAZHQH5F3y7PIGRoB03oA2gIR0CoPVm+TNdJdX2UKGgGR0CgOInhS9/SaAdN6ANoCEdAqEjp4KQaJnV9lChoBkdAnJm2fChvi2gHTegDaAhHQKhKfgv114h1fZQoaAZHQJqd2vZAY51oB03oA2gIR0CoS41KPGQ0dX2UKGgGR0Cg0dbxusLfaAdN6ANoCEdAqEu5j+aScXV9lChoBkdAltWRJI1+AmgHTegDaAhHQKhU7dRBNVR1fZQoaAZHQJzpDZGrjo9oB03oA2gIR0CoVn44ACGOdX2UKGgGR0CgUV0C7sfJaAdN6ANoCEdAqFeJvP1L8XV9lChoBkdAnH9P+sHSnmgHTegDaAhHQKhXt3xFy7x1fZQoaAZHQJ31TeBQN1BoB03oA2gIR0CoYPOQ6p5vdX2UKGgGR0CTNcPluFYdaAdN6ANoCEdAqGKYh2W6b3V9lChoBkdAm2F3Zwn6VWgHTegDaAhHQKhjpuvUz9F1fZQoaAZHQJ6edjPOY6ZoB03oA2gIR0CoY9rqt5lfdX2UKGgGR0CfEWrPt2LYaAdN6ANoCEdAqG0FEiMYM3V9lChoBkdAmoLXjdYW+GgHTegDaAhHQKhun/2kBS11fZQoaAZHQJja0LiMo+hoB03oA2gIR0Cob6r8JlasdX2UKGgGR0CQ9ZZLqUu+aAdN6ANoCEdAqG/bb5/LDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c64a6aefeb3ae91477581a32492b8f9afdf1774eff489ad354467f2008c4aedc
|
3 |
+
size 1087439
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1777.4792767963013, "std_reward": 195.0577627697417, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T21:05:02.562328"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37dfafff4e900426b60e89360798ecec80195e9a647926969feeb119865555a1
|
3 |
+
size 2136
|