matthh commited on
Commit
e9ff555
·
1 Parent(s): faf64da

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.86 +/- 0.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3388138d8fd13926cce2c8a5d4c32fe0ec0654d5db35f3201eea79127d6e602f
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f37af9d8790>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f37af9da120>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675113435731625489,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdOLPPvTysbvRwxc/dOLPPvTysbvRwxc/dOLPPvTysbvRwxc/dOLPPvTysbvRwxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjs+hP4yohL9lxzW/QwWivyFZ7z56Swc/i2GOv8r9Xj+Ucf69vBLEv8DEy79zIde+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB04s8+9PKxu9HDFz+OQDs8HLOOOjF6czt04s8+9PKxu9HDFz+OQDs8HLOOOjF6czt04s8+9PKxu9HDFz+OQDs8HLOOOjF6czt04s8+9PKxu9HDFz+OQDs8HLOOOjF6czuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.40602458 -0.00543057 0.5928317 ]\n [ 0.40602458 -0.00543057 0.5928317 ]\n [ 0.40602458 -0.00543057 0.5928317 ]\n [ 0.40602458 -0.00543057 0.5928317 ]]",
60
+ "desired_goal": "[[ 1.2641466 -1.0363936 -0.71007377]\n [-1.2657856 0.46747687 0.52849543]\n [-1.1123518 0.87106 -0.12424007]\n [-1.5318217 -1.5919418 -0.42017707]]",
61
+ "observation": "[[ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]\n [ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]\n [ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]\n [ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtij+PcAyBr7RUmc+IMIZPdqwWbsXUz0+SVr2PCwJDTy/mpc+ERZzPYo7Db4F+nM7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.12410109 -0.13105297 0.22590186]\n [ 0.03753865 -0.0033217 0.18488728]\n [ 0.03007235 0.00860814 0.2961025 ]\n [ 0.05934722 -0.13792244 0.00372279]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILdDukGKA6L+UhpRSlIwBbJRLMowBdJRHQKUzNYB/7SB1fZQoaAZoCWgPQwgo1qnyPSPmv5SGlFKUaBVLMmgWR0ClMvkm6XjVdX2UKGgGaAloD0MIZJC7CFOU27+UhpRSlGgVSzJoFkdApTK/TgEU03V9lChoBmgJaA9DCNSZe0j4Xu2/lIaUUpRoFUsyaBZHQKUyhId2gWd1fZQoaAZoCWgPQwg3ixcLQ+Tav5SGlFKUaBVLMmgWR0ClNFA3tKI0dX2UKGgGaAloD0MIrfnxlxZ14b+UhpRSlGgVSzJoFkdApTQUA/9pAXV9lChoBmgJaA9DCNVZLbDHxOK/lIaUUpRoFUsyaBZHQKUz2jO9nK51fZQoaAZoCWgPQwgtW+uLhLbbv5SGlFKUaBVLMmgWR0ClM59mHxjKdX2UKGgGaAloD0MIpDfcR27N4L+UhpRSlGgVSzJoFkdApTVz5M10knV9lChoBmgJaA9DCNfdPNUhN9m/lIaUUpRoFUsyaBZHQKU1N7k4m1J1fZQoaAZoCWgPQwiyDdyBOuXdv5SGlFKUaBVLMmgWR0ClNP3IdU83dX2UKGgGaAloD0MIiIGufQG92b+UhpRSlGgVSzJoFkdApTTC7EpAlnV9lChoBmgJaA9DCOmZXmIs092/lIaUUpRoFUsyaBZHQKU2kfvF3px1fZQoaAZoCWgPQwj85ChAFMzjv5SGlFKUaBVLMmgWR0ClNlWxY7q6dX2UKGgGaAloD0MI+pl63SIw17+UhpRSlGgVSzJoFkdApTYbzXjEN3V9lChoBmgJaA9DCLSPFfw2xOy/lIaUUpRoFUsyaBZHQKU14OSW7e51fZQoaAZoCWgPQwjIeJRKeELQv5SGlFKUaBVLMmgWR0ClN+BeHBUJdX2UKGgGaAloD0MIHqm+84sS5r+UhpRSlGgVSzJoFkdApTekMgEEDHV9lChoBmgJaA9DCGlXIeUnVeO/lIaUUpRoFUsyaBZHQKU3aobXHzZ1fZQoaAZoCWgPQwjBU8iVehbov5SGlFKUaBVLMmgWR0ClNzF/x2B8dX2UKGgGaAloD0MI3smnx7YM27+UhpRSlGgVSzJoFkdApTkuQOnVG3V9lChoBmgJaA9DCGSw4lRr4eG/lIaUUpRoFUsyaBZHQKU48hZha1V1fZQoaAZoCWgPQwjZeLDFbp/cv5SGlFKUaBVLMmgWR0ClOLg8bJfZdX2UKGgGaAloD0MIJZNTO8NU47+UhpRSlGgVSzJoFkdApTh97ngYQHV9lChoBmgJaA9DCJkMx/MZUOe/lIaUUpRoFUsyaBZHQKU6TutOmBR1fZQoaAZoCWgPQwhvuI/cmvTjv5SGlFKUaBVLMmgWR0ClOhKgRK6GdX2UKGgGaAloD0MIEw8om3KF4b+UhpRSlGgVSzJoFkdApTnYyXUpeHV9lChoBmgJaA9DCDEm/b0UHtq/lIaUUpRoFUsyaBZHQKU5nfICEHt1fZQoaAZoCWgPQwgHmzqPiv/Nv5SGlFKUaBVLMmgWR0ClO32eHzpYdX2UKGgGaAloD0MIFFrW/WMh1b+UhpRSlGgVSzJoFkdApTtBVfeDWnV9lChoBmgJaA9DCJ5EhH8RNOq/lIaUUpRoFUsyaBZHQKU7B1dPci51fZQoaAZoCWgPQwhzLsVVZd/mv5SGlFKUaBVLMmgWR0ClOsyBK+SKdX2UKGgGaAloD0MIenJNgczO2L+UhpRSlGgVSzJoFkdApTyShnJ1aHV9lChoBmgJaA9DCASsVbsmpNm/lIaUUpRoFUsyaBZHQKU8VisGPgh1fZQoaAZoCWgPQwhGI59XPHXpv5SGlFKUaBVLMmgWR0ClPBwkHD77dX2UKGgGaAloD0MIaHizBu+r77+UhpRSlGgVSzJoFkdApTvhUJfICHV9lChoBmgJaA9DCFqBIatb/fC/lIaUUpRoFUsyaBZHQKU9tTm4iHJ1fZQoaAZoCWgPQwiP/pdr0YLqv5SGlFKUaBVLMmgWR0ClPXjb8FY/dX2UKGgGaAloD0MImKWdmsuN5L+UhpRSlGgVSzJoFkdApT0+1jRUm3V9lChoBmgJaA9DCPNZngd3Z9a/lIaUUpRoFUsyaBZHQKU9A/Zdv891fZQoaAZoCWgPQwiDM/j7xezov5SGlFKUaBVLMmgWR0ClPsx0EHMVdX2UKGgGaAloD0MIVTTW/s7237+UhpRSlGgVSzJoFkdApT6QSxqwhXV9lChoBmgJaA9DCJdYGY183uO/lIaUUpRoFUsyaBZHQKU+VnAZbY91fZQoaAZoCWgPQwh7T+W0p2Tmv5SGlFKUaBVLMmgWR0ClPhto8IRidX2UKGgGaAloD0MIpfYi2o6p17+UhpRSlGgVSzJoFkdApT/0F2V3U3V9lChoBmgJaA9DCAahvI+jue2/lIaUUpRoFUsyaBZHQKU/t7uUliV1fZQoaAZoCWgPQwjZeLDFbp/Rv5SGlFKUaBVLMmgWR0ClP326TW5IdX2UKGgGaAloD0MIQukLIef917+UhpRSlGgVSzJoFkdApT9DBuXNT3V9lChoBmgJaA9DCE2BzM6id+O/lIaUUpRoFUsyaBZHQKVBD6sySFJ1fZQoaAZoCWgPQwhwXTEjvL3iv5SGlFKUaBVLMmgWR0ClQNOQQtjDdX2UKGgGaAloD0MIrrg4KjdR8L+UhpRSlGgVSzJoFkdApUCZhMJyAHV9lChoBmgJaA9DCAEVjiCV4u2/lIaUUpRoFUsyaBZHQKVAXpSJj2B1fZQoaAZoCWgPQwj7k/jcCfbbv5SGlFKUaBVLMmgWR0ClQilkhA4XdX2UKGgGaAloD0MImQzH8xlQ6L+UhpRSlGgVSzJoFkdApUHtQXQ+lnV9lChoBmgJaA9DCJoK8Ui8PN6/lIaUUpRoFUsyaBZHQKVBs1l5GBp1fZQoaAZoCWgPQwhe1y/YDdvlv5SGlFKUaBVLMmgWR0ClQXhcqvvCdX2UKGgGaAloD0MIayi1F9F257+UhpRSlGgVSzJoFkdApUNWsFMZg3V9lChoBmgJaA9DCPKxu0BJAeS/lIaUUpRoFUsyaBZHQKVDGrNnoPl1fZQoaAZoCWgPQwhxOzQsRt3jv5SGlFKUaBVLMmgWR0ClQuEtNBWxdX2UKGgGaAloD0MIwvaTMT5M6b+UhpRSlGgVSzJoFkdApUKmRV6u4nV9lChoBmgJaA9DCEYJ+gs9YtO/lIaUUpRoFUsyaBZHQKVEbub7TDx1fZQoaAZoCWgPQwi+amXCL/XXv5SGlFKUaBVLMmgWR0ClRDLpRoAXdX2UKGgGaAloD0MIRpT2Bl8Y7r+UhpRSlGgVSzJoFkdApUP5KYiPhnV9lChoBmgJaA9DCEzEW+ffLte/lIaUUpRoFUsyaBZHQKVDvmq5sj51fZQoaAZoCWgPQwgyIeaSqm3pv5SGlFKUaBVLMmgWR0ClRag2Q4jsdX2UKGgGaAloD0MI3/5cNGQ87r+UhpRSlGgVSzJoFkdApUVr2g398HV9lChoBmgJaA9DCFKY9zjTBO6/lIaUUpRoFUsyaBZHQKVFMgQHzH11fZQoaAZoCWgPQwj7k/jcCfbZv5SGlFKUaBVLMmgWR0ClRPb83uNQdX2UKGgGaAloD0MIN/3ZjxQR7b+UhpRSlGgVSzJoFkdApUbDcmBvrHV9lChoBmgJaA9DCLqilBCsqtO/lIaUUpRoFUsyaBZHQKVGhyWAwwl1fZQoaAZoCWgPQwiYpghwehfgv5SGlFKUaBVLMmgWR0ClRk1E/jbSdX2UKGgGaAloD0MIqifzj75J5b+UhpRSlGgVSzJoFkdApUYSXKKYRnV9lChoBmgJaA9DCFzMzw1N2da/lIaUUpRoFUsyaBZHQKVH7cFhXsB1fZQoaAZoCWgPQwgNU1vqIC/jv5SGlFKUaBVLMmgWR0ClR7IsiB5HdX2UKGgGaAloD0MI6ITQQZfw7r+UhpRSlGgVSzJoFkdApUd4T0xubnV9lChoBmgJaA9DCM12hT5YxuC/lIaUUpRoFUsyaBZHQKVHPZL7Ged1fZQoaAZoCWgPQwgzar5KPnbav5SGlFKUaBVLMmgWR0ClSShnzxwydX2UKGgGaAloD0MICf63kh0b47+UhpRSlGgVSzJoFkdApUjsR+SbIHV9lChoBmgJaA9DCCo4vCAiteu/lIaUUpRoFUsyaBZHQKVIsqBEroZ1fZQoaAZoCWgPQwiYwRiRKLTiv5SGlFKUaBVLMmgWR0ClSHfXwsoVdX2UKGgGaAloD0MIar3faMcN1L+UhpRSlGgVSzJoFkdApUpGx0MgEHV9lChoBmgJaA9DCNKMRdPZydK/lIaUUpRoFUsyaBZHQKVKCsySFGp1fZQoaAZoCWgPQwhVoYFYNnPTv5SGlFKUaBVLMmgWR0ClSdEPMB6sdX2UKGgGaAloD0MI9nr3x3vV5r+UhpRSlGgVSzJoFkdApUmWYKIBR3V9lChoBmgJaA9DCA9FgT6RJ9C/lIaUUpRoFUsyaBZHQKVLdUADJU51fZQoaAZoCWgPQwgaTwRxHs7jv5SGlFKUaBVLMmgWR0ClSzkZiuuBdX2UKGgGaAloD0MI/kY7bvhd87+UhpRSlGgVSzJoFkdApUr/UtqYZ3V9lChoBmgJaA9DCDNqvko+9ua/lIaUUpRoFUsyaBZHQKVKxH4oJAt1fZQoaAZoCWgPQwheFD3wMVjtv5SGlFKUaBVLMmgWR0ClTIs98qnWdX2UKGgGaAloD0MIBoVBmUaT6b+UhpRSlGgVSzJoFkdApUxO+AVfu3V9lChoBmgJaA9DCE5BfjZy3eK/lIaUUpRoFUsyaBZHQKVMFOt4iX91fZQoaAZoCWgPQwgRiq2gaYnev5SGlFKUaBVLMmgWR0ClS9nymQ8wdX2UKGgGaAloD0MIAU9auKzC4r+UhpRSlGgVSzJoFkdApU211EE1VHV9lChoBmgJaA9DCJYmpaDbS+6/lIaUUpRoFUsyaBZHQKVNebyYoiN1fZQoaAZoCWgPQwir7Lsi+F/mv5SGlFKUaBVLMmgWR0ClTUDA8B+4dX2UKGgGaAloD0MIBkfJq3MM6b+UhpRSlGgVSzJoFkdApU0GoYNy53V9lChoBmgJaA9DCDl+qDRi5uu/lIaUUpRoFUsyaBZHQKVOy3PRiPR1fZQoaAZoCWgPQwiLNPEO8KTXv5SGlFKUaBVLMmgWR0ClTo84HX2/dX2UKGgGaAloD0MIvXMoQ1XM57+UhpRSlGgVSzJoFkdApU5VRxcVxnV9lChoBmgJaA9DCCcvMgG/Ruy/lIaUUpRoFUsyaBZHQKVOGmaYu011ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a3df9bff56e379d98d74e156bcce1200096a4728d325213f4069b9b17da8dad
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9455f21611e6508461154f5b513690199a19937ac40b07f6e77c7d49410345b6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f37af9d8790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f37af9da120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675113435731625489, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdOLPPvTysbvRwxc/dOLPPvTysbvRwxc/dOLPPvTysbvRwxc/dOLPPvTysbvRwxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjs+hP4yohL9lxzW/QwWivyFZ7z56Swc/i2GOv8r9Xj+Ucf69vBLEv8DEy79zIde+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB04s8+9PKxu9HDFz+OQDs8HLOOOjF6czt04s8+9PKxu9HDFz+OQDs8HLOOOjF6czt04s8+9PKxu9HDFz+OQDs8HLOOOjF6czt04s8+9PKxu9HDFz+OQDs8HLOOOjF6czuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40602458 -0.00543057 0.5928317 ]\n [ 0.40602458 -0.00543057 0.5928317 ]\n [ 0.40602458 -0.00543057 0.5928317 ]\n [ 0.40602458 -0.00543057 0.5928317 ]]", "desired_goal": "[[ 1.2641466 -1.0363936 -0.71007377]\n [-1.2657856 0.46747687 0.52849543]\n [-1.1123518 0.87106 -0.12424007]\n [-1.5318217 -1.5919418 -0.42017707]]", "observation": "[[ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]\n [ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]\n [ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]\n [ 0.40602458 -0.00543057 0.5928317 0.01142897 0.00108871 0.00371517]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtij+PcAyBr7RUmc+IMIZPdqwWbsXUz0+SVr2PCwJDTy/mpc+ERZzPYo7Db4F+nM7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12410109 -0.13105297 0.22590186]\n [ 0.03753865 -0.0033217 0.18488728]\n [ 0.03007235 0.00860814 0.2961025 ]\n [ 0.05934722 -0.13792244 0.00372279]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILdDukGKA6L+UhpRSlIwBbJRLMowBdJRHQKUzNYB/7SB1fZQoaAZoCWgPQwgo1qnyPSPmv5SGlFKUaBVLMmgWR0ClMvkm6XjVdX2UKGgGaAloD0MIZJC7CFOU27+UhpRSlGgVSzJoFkdApTK/TgEU03V9lChoBmgJaA9DCNSZe0j4Xu2/lIaUUpRoFUsyaBZHQKUyhId2gWd1fZQoaAZoCWgPQwg3ixcLQ+Tav5SGlFKUaBVLMmgWR0ClNFA3tKI0dX2UKGgGaAloD0MIrfnxlxZ14b+UhpRSlGgVSzJoFkdApTQUA/9pAXV9lChoBmgJaA9DCNVZLbDHxOK/lIaUUpRoFUsyaBZHQKUz2jO9nK51fZQoaAZoCWgPQwgtW+uLhLbbv5SGlFKUaBVLMmgWR0ClM59mHxjKdX2UKGgGaAloD0MIpDfcR27N4L+UhpRSlGgVSzJoFkdApTVz5M10knV9lChoBmgJaA9DCNfdPNUhN9m/lIaUUpRoFUsyaBZHQKU1N7k4m1J1fZQoaAZoCWgPQwiyDdyBOuXdv5SGlFKUaBVLMmgWR0ClNP3IdU83dX2UKGgGaAloD0MIiIGufQG92b+UhpRSlGgVSzJoFkdApTTC7EpAlnV9lChoBmgJaA9DCOmZXmIs092/lIaUUpRoFUsyaBZHQKU2kfvF3px1fZQoaAZoCWgPQwj85ChAFMzjv5SGlFKUaBVLMmgWR0ClNlWxY7q6dX2UKGgGaAloD0MI+pl63SIw17+UhpRSlGgVSzJoFkdApTYbzXjEN3V9lChoBmgJaA9DCLSPFfw2xOy/lIaUUpRoFUsyaBZHQKU14OSW7e51fZQoaAZoCWgPQwjIeJRKeELQv5SGlFKUaBVLMmgWR0ClN+BeHBUJdX2UKGgGaAloD0MIHqm+84sS5r+UhpRSlGgVSzJoFkdApTekMgEEDHV9lChoBmgJaA9DCGlXIeUnVeO/lIaUUpRoFUsyaBZHQKU3aobXHzZ1fZQoaAZoCWgPQwjBU8iVehbov5SGlFKUaBVLMmgWR0ClNzF/x2B8dX2UKGgGaAloD0MI3smnx7YM27+UhpRSlGgVSzJoFkdApTkuQOnVG3V9lChoBmgJaA9DCGSw4lRr4eG/lIaUUpRoFUsyaBZHQKU48hZha1V1fZQoaAZoCWgPQwjZeLDFbp/cv5SGlFKUaBVLMmgWR0ClOLg8bJfZdX2UKGgGaAloD0MIJZNTO8NU47+UhpRSlGgVSzJoFkdApTh97ngYQHV9lChoBmgJaA9DCJkMx/MZUOe/lIaUUpRoFUsyaBZHQKU6TutOmBR1fZQoaAZoCWgPQwhvuI/cmvTjv5SGlFKUaBVLMmgWR0ClOhKgRK6GdX2UKGgGaAloD0MIEw8om3KF4b+UhpRSlGgVSzJoFkdApTnYyXUpeHV9lChoBmgJaA9DCDEm/b0UHtq/lIaUUpRoFUsyaBZHQKU5nfICEHt1fZQoaAZoCWgPQwgHmzqPiv/Nv5SGlFKUaBVLMmgWR0ClO32eHzpYdX2UKGgGaAloD0MIFFrW/WMh1b+UhpRSlGgVSzJoFkdApTtBVfeDWnV9lChoBmgJaA9DCJ5EhH8RNOq/lIaUUpRoFUsyaBZHQKU7B1dPci51fZQoaAZoCWgPQwhzLsVVZd/mv5SGlFKUaBVLMmgWR0ClOsyBK+SKdX2UKGgGaAloD0MIenJNgczO2L+UhpRSlGgVSzJoFkdApTyShnJ1aHV9lChoBmgJaA9DCASsVbsmpNm/lIaUUpRoFUsyaBZHQKU8VisGPgh1fZQoaAZoCWgPQwhGI59XPHXpv5SGlFKUaBVLMmgWR0ClPBwkHD77dX2UKGgGaAloD0MIaHizBu+r77+UhpRSlGgVSzJoFkdApTvhUJfICHV9lChoBmgJaA9DCFqBIatb/fC/lIaUUpRoFUsyaBZHQKU9tTm4iHJ1fZQoaAZoCWgPQwiP/pdr0YLqv5SGlFKUaBVLMmgWR0ClPXjb8FY/dX2UKGgGaAloD0MImKWdmsuN5L+UhpRSlGgVSzJoFkdApT0+1jRUm3V9lChoBmgJaA9DCPNZngd3Z9a/lIaUUpRoFUsyaBZHQKU9A/Zdv891fZQoaAZoCWgPQwiDM/j7xezov5SGlFKUaBVLMmgWR0ClPsx0EHMVdX2UKGgGaAloD0MIVTTW/s7237+UhpRSlGgVSzJoFkdApT6QSxqwhXV9lChoBmgJaA9DCJdYGY183uO/lIaUUpRoFUsyaBZHQKU+VnAZbY91fZQoaAZoCWgPQwh7T+W0p2Tmv5SGlFKUaBVLMmgWR0ClPhto8IRidX2UKGgGaAloD0MIpfYi2o6p17+UhpRSlGgVSzJoFkdApT/0F2V3U3V9lChoBmgJaA9DCAahvI+jue2/lIaUUpRoFUsyaBZHQKU/t7uUliV1fZQoaAZoCWgPQwjZeLDFbp/Rv5SGlFKUaBVLMmgWR0ClP326TW5IdX2UKGgGaAloD0MIQukLIef917+UhpRSlGgVSzJoFkdApT9DBuXNT3V9lChoBmgJaA9DCE2BzM6id+O/lIaUUpRoFUsyaBZHQKVBD6sySFJ1fZQoaAZoCWgPQwhwXTEjvL3iv5SGlFKUaBVLMmgWR0ClQNOQQtjDdX2UKGgGaAloD0MIrrg4KjdR8L+UhpRSlGgVSzJoFkdApUCZhMJyAHV9lChoBmgJaA9DCAEVjiCV4u2/lIaUUpRoFUsyaBZHQKVAXpSJj2B1fZQoaAZoCWgPQwj7k/jcCfbbv5SGlFKUaBVLMmgWR0ClQilkhA4XdX2UKGgGaAloD0MImQzH8xlQ6L+UhpRSlGgVSzJoFkdApUHtQXQ+lnV9lChoBmgJaA9DCJoK8Ui8PN6/lIaUUpRoFUsyaBZHQKVBs1l5GBp1fZQoaAZoCWgPQwhe1y/YDdvlv5SGlFKUaBVLMmgWR0ClQXhcqvvCdX2UKGgGaAloD0MIayi1F9F257+UhpRSlGgVSzJoFkdApUNWsFMZg3V9lChoBmgJaA9DCPKxu0BJAeS/lIaUUpRoFUsyaBZHQKVDGrNnoPl1fZQoaAZoCWgPQwhxOzQsRt3jv5SGlFKUaBVLMmgWR0ClQuEtNBWxdX2UKGgGaAloD0MIwvaTMT5M6b+UhpRSlGgVSzJoFkdApUKmRV6u4nV9lChoBmgJaA9DCEYJ+gs9YtO/lIaUUpRoFUsyaBZHQKVEbub7TDx1fZQoaAZoCWgPQwi+amXCL/XXv5SGlFKUaBVLMmgWR0ClRDLpRoAXdX2UKGgGaAloD0MIRpT2Bl8Y7r+UhpRSlGgVSzJoFkdApUP5KYiPhnV9lChoBmgJaA9DCEzEW+ffLte/lIaUUpRoFUsyaBZHQKVDvmq5sj51fZQoaAZoCWgPQwgyIeaSqm3pv5SGlFKUaBVLMmgWR0ClRag2Q4jsdX2UKGgGaAloD0MI3/5cNGQ87r+UhpRSlGgVSzJoFkdApUVr2g398HV9lChoBmgJaA9DCFKY9zjTBO6/lIaUUpRoFUsyaBZHQKVFMgQHzH11fZQoaAZoCWgPQwj7k/jcCfbZv5SGlFKUaBVLMmgWR0ClRPb83uNQdX2UKGgGaAloD0MIN/3ZjxQR7b+UhpRSlGgVSzJoFkdApUbDcmBvrHV9lChoBmgJaA9DCLqilBCsqtO/lIaUUpRoFUsyaBZHQKVGhyWAwwl1fZQoaAZoCWgPQwiYpghwehfgv5SGlFKUaBVLMmgWR0ClRk1E/jbSdX2UKGgGaAloD0MIqifzj75J5b+UhpRSlGgVSzJoFkdApUYSXKKYRnV9lChoBmgJaA9DCFzMzw1N2da/lIaUUpRoFUsyaBZHQKVH7cFhXsB1fZQoaAZoCWgPQwgNU1vqIC/jv5SGlFKUaBVLMmgWR0ClR7IsiB5HdX2UKGgGaAloD0MI6ITQQZfw7r+UhpRSlGgVSzJoFkdApUd4T0xubnV9lChoBmgJaA9DCM12hT5YxuC/lIaUUpRoFUsyaBZHQKVHPZL7Ged1fZQoaAZoCWgPQwgzar5KPnbav5SGlFKUaBVLMmgWR0ClSShnzxwydX2UKGgGaAloD0MICf63kh0b47+UhpRSlGgVSzJoFkdApUjsR+SbIHV9lChoBmgJaA9DCCo4vCAiteu/lIaUUpRoFUsyaBZHQKVIsqBEroZ1fZQoaAZoCWgPQwiYwRiRKLTiv5SGlFKUaBVLMmgWR0ClSHfXwsoVdX2UKGgGaAloD0MIar3faMcN1L+UhpRSlGgVSzJoFkdApUpGx0MgEHV9lChoBmgJaA9DCNKMRdPZydK/lIaUUpRoFUsyaBZHQKVKCsySFGp1fZQoaAZoCWgPQwhVoYFYNnPTv5SGlFKUaBVLMmgWR0ClSdEPMB6sdX2UKGgGaAloD0MI9nr3x3vV5r+UhpRSlGgVSzJoFkdApUmWYKIBR3V9lChoBmgJaA9DCA9FgT6RJ9C/lIaUUpRoFUsyaBZHQKVLdUADJU51fZQoaAZoCWgPQwgaTwRxHs7jv5SGlFKUaBVLMmgWR0ClSzkZiuuBdX2UKGgGaAloD0MI/kY7bvhd87+UhpRSlGgVSzJoFkdApUr/UtqYZ3V9lChoBmgJaA9DCDNqvko+9ua/lIaUUpRoFUsyaBZHQKVKxH4oJAt1fZQoaAZoCWgPQwheFD3wMVjtv5SGlFKUaBVLMmgWR0ClTIs98qnWdX2UKGgGaAloD0MIBoVBmUaT6b+UhpRSlGgVSzJoFkdApUxO+AVfu3V9lChoBmgJaA9DCE5BfjZy3eK/lIaUUpRoFUsyaBZHQKVMFOt4iX91fZQoaAZoCWgPQwgRiq2gaYnev5SGlFKUaBVLMmgWR0ClS9nymQ8wdX2UKGgGaAloD0MIAU9auKzC4r+UhpRSlGgVSzJoFkdApU211EE1VHV9lChoBmgJaA9DCJYmpaDbS+6/lIaUUpRoFUsyaBZHQKVNebyYoiN1fZQoaAZoCWgPQwir7Lsi+F/mv5SGlFKUaBVLMmgWR0ClTUDA8B+4dX2UKGgGaAloD0MIBkfJq3MM6b+UhpRSlGgVSzJoFkdApU0GoYNy53V9lChoBmgJaA9DCDl+qDRi5uu/lIaUUpRoFUsyaBZHQKVOy3PRiPR1fZQoaAZoCWgPQwiLNPEO8KTXv5SGlFKUaBVLMmgWR0ClTo84HX2/dX2UKGgGaAloD0MIvXMoQ1XM57+UhpRSlGgVSzJoFkdApU5VRxcVxnV9lChoBmgJaA9DCCcvMgG/Ruy/lIaUUpRoFUsyaBZHQKVOGmaYu011ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (488 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.8578609071904794, "std_reward": 0.2791335365677592, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T22:06:32.732788"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dedca345cd72c2ae4d4062f3cd31a727c603fd27825b8e5a20d39999151ebece
3
+ size 3056