matthieulel commited on
Commit
f96c434
·
verified ·
1 Parent(s): 4ed4f70

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-atto-1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: convnextv2-atto-1k-224-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # convnextv2-atto-1k-224-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-atto-1k-224](https://huggingface.co/facebook/convnextv2-atto-1k-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4657
24
+ - Accuracy: 0.8461
25
+ - Precision: 0.8442
26
+ - Recall: 0.8461
27
+ - F1: 0.8440
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 2.0062 | 0.99 | 62 | 1.8928 | 0.3450 | 0.3432 | 0.3450 | 0.2956 |
62
+ | 1.1323 | 2.0 | 125 | 1.0026 | 0.6590 | 0.6634 | 0.6590 | 0.6399 |
63
+ | 0.8977 | 2.99 | 187 | 0.7348 | 0.7486 | 0.7415 | 0.7486 | 0.7399 |
64
+ | 0.7119 | 4.0 | 250 | 0.6395 | 0.7892 | 0.7878 | 0.7892 | 0.7770 |
65
+ | 0.6393 | 4.99 | 312 | 0.5801 | 0.7971 | 0.7916 | 0.7971 | 0.7915 |
66
+ | 0.6463 | 6.0 | 375 | 0.5958 | 0.7976 | 0.8147 | 0.7976 | 0.7909 |
67
+ | 0.6197 | 6.99 | 437 | 0.5363 | 0.8151 | 0.8119 | 0.8151 | 0.8112 |
68
+ | 0.5779 | 8.0 | 500 | 0.5276 | 0.8207 | 0.8205 | 0.8207 | 0.8185 |
69
+ | 0.5841 | 8.99 | 562 | 0.5197 | 0.8185 | 0.8203 | 0.8185 | 0.8157 |
70
+ | 0.5597 | 10.0 | 625 | 0.5025 | 0.8253 | 0.8192 | 0.8253 | 0.8193 |
71
+ | 0.5437 | 10.99 | 687 | 0.4912 | 0.8309 | 0.8295 | 0.8309 | 0.8296 |
72
+ | 0.5242 | 12.0 | 750 | 0.5001 | 0.8275 | 0.8303 | 0.8275 | 0.8245 |
73
+ | 0.5029 | 12.99 | 812 | 0.5075 | 0.8241 | 0.8228 | 0.8241 | 0.8208 |
74
+ | 0.5396 | 14.0 | 875 | 0.4784 | 0.8393 | 0.8395 | 0.8393 | 0.8371 |
75
+ | 0.4746 | 14.99 | 937 | 0.4727 | 0.8331 | 0.8318 | 0.8331 | 0.8317 |
76
+ | 0.4786 | 16.0 | 1000 | 0.4856 | 0.8331 | 0.8308 | 0.8331 | 0.8300 |
77
+ | 0.4338 | 16.99 | 1062 | 0.4884 | 0.8337 | 0.8333 | 0.8337 | 0.8309 |
78
+ | 0.4772 | 18.0 | 1125 | 0.4618 | 0.8405 | 0.8370 | 0.8405 | 0.8377 |
79
+ | 0.4733 | 18.99 | 1187 | 0.4740 | 0.8393 | 0.8394 | 0.8393 | 0.8381 |
80
+ | 0.4475 | 20.0 | 1250 | 0.4678 | 0.8388 | 0.8349 | 0.8388 | 0.8345 |
81
+ | 0.4229 | 20.99 | 1312 | 0.4881 | 0.8331 | 0.8317 | 0.8331 | 0.8303 |
82
+ | 0.46 | 22.0 | 1375 | 0.4728 | 0.8410 | 0.8382 | 0.8410 | 0.8371 |
83
+ | 0.4298 | 22.99 | 1437 | 0.4642 | 0.8360 | 0.8348 | 0.8360 | 0.8345 |
84
+ | 0.4225 | 24.0 | 1500 | 0.4706 | 0.8371 | 0.8368 | 0.8371 | 0.8359 |
85
+ | 0.426 | 24.99 | 1562 | 0.4733 | 0.8399 | 0.8367 | 0.8399 | 0.8371 |
86
+ | 0.3839 | 26.0 | 1625 | 0.4682 | 0.8444 | 0.8423 | 0.8444 | 0.8422 |
87
+ | 0.4007 | 26.99 | 1687 | 0.4665 | 0.8382 | 0.8371 | 0.8382 | 0.8367 |
88
+ | 0.4245 | 28.0 | 1750 | 0.4695 | 0.8388 | 0.8357 | 0.8388 | 0.8358 |
89
+ | 0.3868 | 28.99 | 1812 | 0.4668 | 0.8461 | 0.8444 | 0.8461 | 0.8442 |
90
+ | 0.3933 | 29.76 | 1860 | 0.4657 | 0.8461 | 0.8442 | 0.8461 | 0.8440 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f0a2b08658c0dee891aafa5d6225a043e44e4042ae936fc6285110802732b62c
3
  size 13578704
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fce63094dd7d2bf2c01efad576ffad6329afb99c3e27fd68fdecd7176d530ab
3
  size 13578704