--- license: apache-2.0 base_model: facebook/convnextv2-nano-1k-224 tags: - image-classification - vision - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: convnextv2-nano-1k-224-finetuned-galaxy10-decals results: [] --- # convnextv2-nano-1k-224-finetuned-galaxy10-decals This model is a fine-tuned version of [facebook/convnextv2-nano-1k-224](https://huggingface.co/facebook/convnextv2-nano-1k-224) on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set: - Loss: 0.7023 - Accuracy: 0.8591 - Precision: 0.8565 - Recall: 0.8591 - F1: 0.8566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0509 | 0.99 | 62 | 0.9876 | 0.6561 | 0.6692 | 0.6561 | 0.6355 | | 0.8315 | 2.0 | 125 | 0.6745 | 0.7638 | 0.7726 | 0.7638 | 0.7581 | | 0.7659 | 2.99 | 187 | 0.6651 | 0.7897 | 0.8092 | 0.7897 | 0.7858 | | 0.6645 | 4.0 | 250 | 0.6068 | 0.8027 | 0.8117 | 0.8027 | 0.8031 | | 0.6212 | 4.99 | 312 | 0.5895 | 0.8061 | 0.8158 | 0.8061 | 0.8058 | | 0.624 | 6.0 | 375 | 0.5128 | 0.8269 | 0.8223 | 0.8269 | 0.8220 | | 0.5648 | 6.99 | 437 | 0.5219 | 0.8196 | 0.8239 | 0.8196 | 0.8171 | | 0.5235 | 8.0 | 500 | 0.5652 | 0.8275 | 0.8303 | 0.8275 | 0.8270 | | 0.5316 | 8.99 | 562 | 0.4804 | 0.8427 | 0.8431 | 0.8427 | 0.8396 | | 0.4756 | 10.0 | 625 | 0.5345 | 0.8213 | 0.8188 | 0.8213 | 0.8169 | | 0.4758 | 10.99 | 687 | 0.5560 | 0.8326 | 0.8324 | 0.8326 | 0.8302 | | 0.4499 | 12.0 | 750 | 0.5283 | 0.8416 | 0.8458 | 0.8416 | 0.8423 | | 0.4274 | 12.99 | 812 | 0.5347 | 0.8348 | 0.8364 | 0.8348 | 0.8337 | | 0.4148 | 14.0 | 875 | 0.5326 | 0.8422 | 0.8396 | 0.8422 | 0.8383 | | 0.3822 | 14.99 | 937 | 0.5116 | 0.8410 | 0.8442 | 0.8410 | 0.8412 | | 0.3613 | 16.0 | 1000 | 0.6081 | 0.8230 | 0.8245 | 0.8230 | 0.8210 | | 0.2903 | 16.99 | 1062 | 0.6212 | 0.8298 | 0.8289 | 0.8298 | 0.8275 | | 0.3405 | 18.0 | 1125 | 0.6093 | 0.8377 | 0.8394 | 0.8377 | 0.8368 | | 0.2999 | 18.99 | 1187 | 0.6482 | 0.8393 | 0.8352 | 0.8393 | 0.8356 | | 0.2792 | 20.0 | 1250 | 0.6473 | 0.8484 | 0.8482 | 0.8484 | 0.8419 | | 0.2681 | 20.99 | 1312 | 0.6710 | 0.8467 | 0.8428 | 0.8467 | 0.8425 | | 0.2966 | 22.0 | 1375 | 0.6355 | 0.8534 | 0.8513 | 0.8534 | 0.8514 | | 0.2609 | 22.99 | 1437 | 0.6850 | 0.8399 | 0.8406 | 0.8399 | 0.8397 | | 0.2281 | 24.0 | 1500 | 0.7124 | 0.8444 | 0.8444 | 0.8444 | 0.8440 | | 0.2354 | 24.99 | 1562 | 0.7317 | 0.8427 | 0.8394 | 0.8427 | 0.8395 | | 0.2188 | 26.0 | 1625 | 0.6753 | 0.8512 | 0.8490 | 0.8512 | 0.8489 | | 0.2118 | 26.99 | 1687 | 0.6865 | 0.8506 | 0.8495 | 0.8506 | 0.8494 | | 0.2232 | 28.0 | 1750 | 0.7098 | 0.8557 | 0.8531 | 0.8557 | 0.8535 | | 0.2104 | 28.99 | 1812 | 0.7023 | 0.8591 | 0.8565 | 0.8591 | 0.8566 | | 0.1936 | 29.76 | 1860 | 0.7043 | 0.8557 | 0.8540 | 0.8557 | 0.8541 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1