matthieulel commited on
Commit
4950973
·
verified ·
1 Parent(s): ba67b59

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/dinov2-base-imagenet1k-1-layer
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [facebook/dinov2-base-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-base-imagenet1k-1-layer) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5676
24
+ - Accuracy: 0.8608
25
+ - Precision: 0.8583
26
+ - Recall: 0.8608
27
+ - F1: 0.8589
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 0.8157 | 0.99 | 62 | 0.6740 | 0.7813 | 0.8046 | 0.7813 | 0.7853 |
62
+ | 0.8091 | 2.0 | 125 | 0.5948 | 0.8021 | 0.8016 | 0.8021 | 0.7950 |
63
+ | 0.6983 | 2.99 | 187 | 0.6016 | 0.7965 | 0.8077 | 0.7965 | 0.7909 |
64
+ | 0.6701 | 4.0 | 250 | 0.5676 | 0.7982 | 0.8016 | 0.7982 | 0.7954 |
65
+ | 0.5998 | 4.99 | 312 | 0.5116 | 0.8286 | 0.8401 | 0.8286 | 0.8302 |
66
+ | 0.5521 | 6.0 | 375 | 0.5155 | 0.8354 | 0.8375 | 0.8354 | 0.8325 |
67
+ | 0.5441 | 6.99 | 437 | 0.5574 | 0.8033 | 0.8104 | 0.8033 | 0.7980 |
68
+ | 0.5142 | 8.0 | 500 | 0.4818 | 0.8410 | 0.8418 | 0.8410 | 0.8376 |
69
+ | 0.5136 | 8.99 | 562 | 0.4914 | 0.8337 | 0.8353 | 0.8337 | 0.8317 |
70
+ | 0.4533 | 10.0 | 625 | 0.4740 | 0.8320 | 0.8335 | 0.8320 | 0.8295 |
71
+ | 0.4904 | 10.99 | 687 | 0.5075 | 0.8399 | 0.8409 | 0.8399 | 0.8375 |
72
+ | 0.4361 | 12.0 | 750 | 0.4552 | 0.8563 | 0.8554 | 0.8563 | 0.8540 |
73
+ | 0.414 | 12.99 | 812 | 0.5025 | 0.8365 | 0.8455 | 0.8365 | 0.8374 |
74
+ | 0.4114 | 14.0 | 875 | 0.4822 | 0.8467 | 0.8437 | 0.8467 | 0.8420 |
75
+ | 0.3878 | 14.99 | 937 | 0.4615 | 0.8574 | 0.8552 | 0.8574 | 0.8549 |
76
+ | 0.3756 | 16.0 | 1000 | 0.5017 | 0.8444 | 0.8523 | 0.8444 | 0.8449 |
77
+ | 0.3056 | 16.99 | 1062 | 0.4910 | 0.8517 | 0.8495 | 0.8517 | 0.8501 |
78
+ | 0.3255 | 18.0 | 1125 | 0.5206 | 0.8523 | 0.8505 | 0.8523 | 0.8491 |
79
+ | 0.3224 | 18.99 | 1187 | 0.5066 | 0.8450 | 0.8470 | 0.8450 | 0.8438 |
80
+ | 0.2763 | 20.0 | 1250 | 0.5043 | 0.8574 | 0.8519 | 0.8574 | 0.8534 |
81
+ | 0.2926 | 20.99 | 1312 | 0.5345 | 0.8546 | 0.8542 | 0.8546 | 0.8512 |
82
+ | 0.2824 | 22.0 | 1375 | 0.5320 | 0.8529 | 0.8523 | 0.8529 | 0.8517 |
83
+ | 0.2613 | 22.99 | 1437 | 0.5254 | 0.8563 | 0.8543 | 0.8563 | 0.8542 |
84
+ | 0.2292 | 24.0 | 1500 | 0.5553 | 0.8546 | 0.8529 | 0.8546 | 0.8528 |
85
+ | 0.2313 | 24.99 | 1562 | 0.5603 | 0.8602 | 0.8612 | 0.8602 | 0.8593 |
86
+ | 0.2143 | 26.0 | 1625 | 0.5267 | 0.8670 | 0.8645 | 0.8670 | 0.8650 |
87
+ | 0.2075 | 26.99 | 1687 | 0.5737 | 0.8574 | 0.8589 | 0.8574 | 0.8573 |
88
+ | 0.2121 | 28.0 | 1750 | 0.5748 | 0.8619 | 0.8601 | 0.8619 | 0.8604 |
89
+ | 0.1944 | 28.99 | 1812 | 0.5666 | 0.8647 | 0.8618 | 0.8647 | 0.8624 |
90
+ | 0.1866 | 29.76 | 1860 | 0.5676 | 0.8608 | 0.8583 | 0.8608 | 0.8589 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:144abb36249106cc09a4a7dd84c336dfcafcbf975801c76be2ed067597462ab6
3
  size 346409112
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88044928e8d12dfb8e853121849ac24d997561af3fb9805f9273d62cf3128cd0
3
  size 346409112