File size: 4,460 Bytes
3ed9b70
 
 
 
ac71066
 
3ed9b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac71066
3ed9b70
ac71066
 
 
 
 
3ed9b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: apache-2.0
base_model: google/vit-large-patch32-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-large-patch32-224-in21k-finetuned-galaxy10-decals
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-large-patch32-224-in21k-finetuned-galaxy10-decals

This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the matthieulel/galaxy10_decals dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5849
- Accuracy: 0.8236
- Precision: 0.8257
- Recall: 0.8236
- F1: 0.8212

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.1583        | 0.99  | 124  | 1.0551          | 0.7069   | 0.6559    | 0.7069 | 0.6758 |
| 0.8599        | 2.0   | 249  | 0.7914          | 0.7621   | 0.7717    | 0.7621 | 0.7557 |
| 0.854         | 3.0   | 374  | 0.7115          | 0.7672   | 0.7850    | 0.7672 | 0.7642 |
| 0.7282        | 4.0   | 499  | 0.6807          | 0.7683   | 0.7746    | 0.7683 | 0.7604 |
| 0.6165        | 4.99  | 623  | 0.6208          | 0.8016   | 0.8088    | 0.8016 | 0.8015 |
| 0.5946        | 6.0   | 748  | 0.5850          | 0.8044   | 0.8084    | 0.8044 | 0.8009 |
| 0.6243        | 7.0   | 873  | 0.6090          | 0.7931   | 0.8037    | 0.7931 | 0.7935 |
| 0.5429        | 8.0   | 998  | 0.5830          | 0.8021   | 0.8087    | 0.8021 | 0.8006 |
| 0.558         | 8.99  | 1122 | 0.5725          | 0.8095   | 0.8191    | 0.8095 | 0.8081 |
| 0.457         | 10.0  | 1247 | 0.5702          | 0.8123   | 0.8144    | 0.8123 | 0.8085 |
| 0.4399        | 11.0  | 1372 | 0.5973          | 0.8021   | 0.8013    | 0.8021 | 0.7995 |
| 0.4055        | 12.0  | 1497 | 0.5799          | 0.8157   | 0.8186    | 0.8157 | 0.8122 |
| 0.417         | 12.99 | 1621 | 0.6006          | 0.8061   | 0.8175    | 0.8061 | 0.8066 |
| 0.3843        | 14.0  | 1746 | 0.5849          | 0.8236   | 0.8257    | 0.8236 | 0.8212 |
| 0.371         | 15.0  | 1871 | 0.5711          | 0.8196   | 0.8157    | 0.8196 | 0.8161 |
| 0.3546        | 16.0  | 1996 | 0.6050          | 0.8140   | 0.8171    | 0.8140 | 0.8147 |
| 0.2935        | 16.99 | 2120 | 0.6425          | 0.8106   | 0.8159    | 0.8106 | 0.8091 |
| 0.2505        | 18.0  | 2245 | 0.6569          | 0.8112   | 0.8091    | 0.8112 | 0.8086 |
| 0.3094        | 19.0  | 2370 | 0.6558          | 0.8162   | 0.8137    | 0.8162 | 0.8137 |
| 0.2739        | 20.0  | 2495 | 0.7201          | 0.8067   | 0.8094    | 0.8067 | 0.8025 |
| 0.2224        | 20.99 | 2619 | 0.7227          | 0.8140   | 0.8175    | 0.8140 | 0.8114 |
| 0.2359        | 22.0  | 2744 | 0.6941          | 0.8157   | 0.8142    | 0.8157 | 0.8136 |
| 0.2535        | 23.0  | 2869 | 0.7086          | 0.8157   | 0.8160    | 0.8157 | 0.8123 |
| 0.2047        | 24.0  | 2994 | 0.7185          | 0.8236   | 0.8236    | 0.8236 | 0.8207 |
| 0.2162        | 24.99 | 3118 | 0.7135          | 0.8219   | 0.8200    | 0.8219 | 0.8194 |
| 0.2297        | 26.0  | 3243 | 0.7269          | 0.8213   | 0.8172    | 0.8213 | 0.8179 |
| 0.2048        | 27.0  | 3368 | 0.7392          | 0.8145   | 0.8156    | 0.8145 | 0.8143 |
| 0.2156        | 28.0  | 3493 | 0.7453          | 0.8207   | 0.8182    | 0.8207 | 0.8174 |
| 0.1785        | 28.99 | 3617 | 0.7497          | 0.8168   | 0.8157    | 0.8168 | 0.8145 |
| 0.1785        | 29.82 | 3720 | 0.7429          | 0.8202   | 0.8190    | 0.8202 | 0.8173 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1