|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from io import BytesIO |
|
from transformers import CLIPProcessor, CLIPModel |
|
import base64 |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="."): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
self.model = CLIPModel.from_pretrained(path).to(self.device).eval() |
|
self.processor = CLIPProcessor.from_pretrained(path) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
images (:obj:`PIL.Image`) |
|
candiates (:obj:`list`) |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
""" |
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
txt = inputs['text'] |
|
|
|
txt = self.processor(text=txt, return_tensors="pt",padding=True).to(self.device) |
|
image = self.processor(images=image, return_tensors="pt",padding=True).to(self.device) |
|
with torch.no_grad(): |
|
txt_features = self.model.get_text_features(**txt) |
|
image_features = self.model.get_image_features(**image) |
|
img = image_features.tolist() |
|
txt = txt_features.tolist() |
|
pred = {"image": img, "text": txt} |
|
|
|
return pred |
|
|