File size: 6,466 Bytes
65f8a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language:
- en
license: apache-2.0
tags:
- edu
- continual pretraining
- llama-cpp
- gguf-my-repo
base_model: BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
datasets:
- HuggingFaceFW/fineweb-edu
metrics:
- accuracy
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    temperature: 0.8
    repetition_penalty: 1.05
    no_repeat_ngram_size: 4
    eta_cutoff: 0.0006
    renormalize_logits: true
widget:
- text: My name is El Microondas the Wise, and
  example_title: El Microondas
- text: Kennesaw State University is a public
  example_title: Kennesaw State University
- text: Bungie Studios is an American video game developer. They are most famous for
    developing the award winning Halo series of video games. They also made Destiny.
    The studio was founded
  example_title: Bungie
- text: The Mona Lisa is a world-renowned painting created by
  example_title: Mona Lisa
- text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
  example_title: Harry Potter Series
- text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
    have water, but no fish. What am I?

    Answer:'
  example_title: Riddle
- text: The process of photosynthesis involves the conversion of
  example_title: Photosynthesis
- text: Jane went to the store to buy some groceries. She picked up apples, oranges,
    and a loaf of bread. When she got home, she realized she forgot
  example_title: Story Continuation
- text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
    and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
    they meet if the distance between the stations is 300 miles?

    To determine'
  example_title: Math Problem
- text: In the context of computer programming, an algorithm is
  example_title: Algorithm Definition
pipeline_tag: text-generation
model-index:
- name: smol_llama-220M-GQA-fineweb_edu
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 19.88
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 2.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.23
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.26
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.41
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
      name: Open LLM Leaderboard
---

# mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF
This model was converted to GGUF format from [`BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu`](https://huggingface.co/BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -c 2048
```