File size: 18,464 Bytes
1a80e84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-distilbert-dot-v1
widget:
- source_sentence: Qual é o horário de funcionamento do setor DCFN (Divisão de Contabilidade
e Finanças)?
sentences:
- 'Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao'
- Por favor, contate o suporte técnico detalhando o problema do equipamento para
diagnóstico e reparo.
- Envie um e-mail para [email protected].
- source_sentence: Como solicitar pagamento de ajuda de custos à estudante?
sentences:
- Para instalar uma impressora, solicite o serviço ao suporte de TI em https://atendimento.ufes.br,
que poderá auxiliar com a instalação e configuração do equipamento.
- Faça login em https://administrativo.ufes.br/sistema/catalogo-produtos/catalogo.
- 'Cabe à Secretaria Única de Graduação – SUGRAD/CEUNES instruir devidamente o processo
digital, encaminhar para análise e aprovação da Direção do Ceunes, que se estiver
de acordo, remeterá o mesmo à DCFN (Divisão de Contabilidade e Finanças) para
efetivação do pagamento.
Informações sobre pagamento de ajuda de custos à estudantes entrar em contato
com a DCFN (Divisão de Contabilidade e Finanças).
E-mail institucional: [email protected].
Telefones: 3312-1517 e 3312-1518.
Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao'
- source_sentence: Como solicitar atendimento social online?
sentences:
- Acesse https://administrativo.ufes.br/sistema/solicitacao/visualizar-solicitacoes-universidade.
- Para dificuldades de acesso à rede Eduroam, verifique as configurações de rede
e as credenciais fornecidas. Caso persista, contate o suporte de TI da UFES para
assistência.
- Envie um e-mail para [email protected] para agendar o atendimento.
- source_sentence: Problemas - Pontos de Internet
sentences:
- Se há pontos de internet que não estão funcionando, por favor, entre em contato
com o suporte de TI para solicitar manutenção ou inspeção dos cabos e conectores.
- Siga as orientações em https://senha.ufes.br/site/recuperaCredenciais.
- Procurar a aplicação Executar no menu do Windows ou pressionar as teclas simultaneamente
Windows + R e digitar \\172.20.110.8 .
- source_sentence: Qual é o procedimento para solicitação de compras?
sentences:
- Envie um ofício via documento avulso para DRMN. Mais informações em https://drm.saomateus.ufes.br/agentes-patrimoniais.
- Para solicitar uma compra, é necessário preencher o formulário de solicitação
e enviá-lo ao setor de compras.
- Atualmente somente são realizadas consultas relativas à avaliação dos exames periódicos.
Envie um e-mail para [email protected] ou ligue para equipe de enfermagem
no ramal (27) 3312-1742. O horário de atendimento é de segunda a sexta-feira,
das 08h às 11h30 e das 12h30 às 17h.
datasets:
- matunderstars/ufes-qa-data
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/multi-qa-distilbert-dot-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-distilbert-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-distilbert-dot-v1) on the [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) and [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-distilbert-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-distilbert-dot-v1) <!-- at revision af530b176a2172b3aeeb9abc7b9d4e808f2a9477 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Dot Product
- **Training Datasets:**
- [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
- [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("matunderstars/ufes-qa-embedding-finetuned-v3")
# Run inference
sentences = [
'Qual é o procedimento para solicitação de compras?',
'Para solicitar uma compra, é necessário preencher o formulário de solicitação e enviá-lo ao setor de compras.',
'Atualmente somente são realizadas consultas relativas à avaliação dos exames periódicos. Envie um e-mail para [email protected] ou ligue para equipe de enfermagem no ramal (27) 3312-1742. O horário de atendimento é de segunda a sexta-feira, das 08h às 11h30 e das 12h30 às 17h.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### train
* Dataset: [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d)
* Size: 100 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 100 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 18.01 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 56.46 tokens</li><li>max: 390 tokens</li></ul> |
* Samples:
| question | answer |
|:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Onde encontrar informações sobre diárias?</code> | <code>Procedimentos, formulários, dúvidas e orientações estão disponíveis em:<br>https://gestaoadministrativa.saomateus.ufes.br/procedimentos-necessarios-para-solicitacao-de-diarias-e-passagens-aereas-no-ambito-do-ceunesufes</code> |
| <code>Onde encontrar informações sobre as salas de aula e a configuração de equipamentos?</code> | <code>Consulte o manual em https://dtin.saomateus.ufes.br/tecnologias-educacionais.</code> |
| <code>Como cadastrar/alterar dados no Sistema Integrado de Ensino (SIE), Protocolo, Portal Administrativo, Acadêmico e Reservas?</code> | <code>Acesse https://dtin.saomateus.ufes.br/cadastros-e-habilitacao-aos-sistemas-institucionais e preencha o formulário.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### test
* Dataset: [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d)
* Size: 100 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 100 samples:
| | question | answer |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 18.3 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 52.4 tokens</li><li>max: 219 tokens</li></ul> |
* Samples:
| question | answer |
|:------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Liberação de Acesso a sistemas institucionais</code> | <code>Para liberar acesso a sistemas institucionais, entre em contato com o setor de TI da UFES, especificando o recurso ou sistema para o qual precisa de acesso.</code> |
| <code>Como criar uma nova ata de registro de preços?</code> | <code>Observe o calendário de compras CEUNES. Acesse https://crm.saomateus.ufes.br.</code> |
| <code>Sistema dos Correios (SIGEP) não abre</code> | <code>Verifique se o sistema SIGEP está atualizado. Consulte o suporte de TI para assistência.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 180
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 180
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:--------:|:----:|:-------------:|
| 71.4286 | 500 | 0.1063 |
| 142.8571 | 1000 | 0.0001 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |