--- license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer model-index: - name: roberta_cosine_adamw_torch_fused results: [] --- # roberta_cosine_adamw_torch_fused This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4842 - F1 macro: 0.2732 - Weighted: 0.4704 - Balanced accuracy: 0.3585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 macro | Weighted | Balanced accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:| | 1.936 | 1.0 | 77 | 1.9420 | 0.0143 | 0.0070 | 0.125 | | 1.747 | 2.0 | 154 | 1.7184 | 0.1319 | 0.2747 | 0.2271 | | 1.6439 | 3.0 | 231 | 1.7182 | 0.1717 | 0.2495 | 0.2961 | | 1.5361 | 4.0 | 308 | 1.4554 | 0.2328 | 0.4842 | 0.3004 | | 1.3294 | 5.0 | 385 | 1.5815 | 0.2189 | 0.3779 | 0.3188 | | 1.1602 | 6.0 | 462 | 1.5172 | 0.2386 | 0.4371 | 0.3296 | | 1.2601 | 7.0 | 539 | 1.4842 | 0.2732 | 0.4704 | 0.3585 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1