mav23 commited on
Commit
ba7d09d
·
verified ·
1 Parent(s): 28f5010

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ anima-phi-neptune-mistral-7b.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: artistic-2.0
3
+ tags:
4
+ - chemistry
5
+ - biology
6
+ - climate
7
+ - science
8
+ - philosophy
9
+ - nature
10
+ - ecology
11
+ - biomimicry
12
+ - fauna
13
+ - flora
14
+ datasets:
15
+ - Severian/Biomimicry
16
+ - emrgnt-cmplxty/sciphi-textbooks-are-all-you-need
17
+ - fmars/wiki_stem
18
+ - fblgit/tree-of-knowledge
19
+ - Severian/Bio-Design-Process
20
+ metrics:
21
+ - accuracy
22
+ pipeline_tag: text-generation
23
+ model-index:
24
+ - name: ANIMA-Phi-Neptune-Mistral-7B-v4
25
+ results:
26
+ - task:
27
+ type: text-generation
28
+ name: Text Generation
29
+ dataset:
30
+ name: AI2 Reasoning Challenge (25-Shot)
31
+ type: ai2_arc
32
+ config: ARC-Challenge
33
+ split: test
34
+ args:
35
+ num_few_shot: 25
36
+ metrics:
37
+ - type: acc_norm
38
+ value: 55.46
39
+ name: normalized accuracy
40
+ source:
41
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Severian/ANIMA-Phi-Neptune-Mistral-7B-v4
42
+ name: Open LLM Leaderboard
43
+ - task:
44
+ type: text-generation
45
+ name: Text Generation
46
+ dataset:
47
+ name: HellaSwag (10-Shot)
48
+ type: hellaswag
49
+ split: validation
50
+ args:
51
+ num_few_shot: 10
52
+ metrics:
53
+ - type: acc_norm
54
+ value: 77.63
55
+ name: normalized accuracy
56
+ source:
57
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Severian/ANIMA-Phi-Neptune-Mistral-7B-v4
58
+ name: Open LLM Leaderboard
59
+ - task:
60
+ type: text-generation
61
+ name: Text Generation
62
+ dataset:
63
+ name: MMLU (5-Shot)
64
+ type: cais/mmlu
65
+ config: all
66
+ split: test
67
+ args:
68
+ num_few_shot: 5
69
+ metrics:
70
+ - type: acc
71
+ value: 53.12
72
+ name: accuracy
73
+ source:
74
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Severian/ANIMA-Phi-Neptune-Mistral-7B-v4
75
+ name: Open LLM Leaderboard
76
+ - task:
77
+ type: text-generation
78
+ name: Text Generation
79
+ dataset:
80
+ name: TruthfulQA (0-shot)
81
+ type: truthful_qa
82
+ config: multiple_choice
83
+ split: validation
84
+ args:
85
+ num_few_shot: 0
86
+ metrics:
87
+ - type: mc2
88
+ value: 59.01
89
+ source:
90
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Severian/ANIMA-Phi-Neptune-Mistral-7B-v4
91
+ name: Open LLM Leaderboard
92
+ - task:
93
+ type: text-generation
94
+ name: Text Generation
95
+ dataset:
96
+ name: Winogrande (5-shot)
97
+ type: winogrande
98
+ config: winogrande_xl
99
+ split: validation
100
+ args:
101
+ num_few_shot: 5
102
+ metrics:
103
+ - type: acc
104
+ value: 73.48
105
+ name: accuracy
106
+ source:
107
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Severian/ANIMA-Phi-Neptune-Mistral-7B-v4
108
+ name: Open LLM Leaderboard
109
+ - task:
110
+ type: text-generation
111
+ name: Text Generation
112
+ dataset:
113
+ name: GSM8k (5-shot)
114
+ type: gsm8k
115
+ config: main
116
+ split: test
117
+ args:
118
+ num_few_shot: 5
119
+ metrics:
120
+ - type: acc
121
+ value: 14.94
122
+ name: accuracy
123
+ source:
124
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Severian/ANIMA-Phi-Neptune-Mistral-7B-v4
125
+ name: Open LLM Leaderboard
126
+ ---
127
+ # ANIMA-Phi-Neptune-Mistral-7B: Biomimicry Enhanced LLM
128
+
129
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64740cf7485a7c8e1bd51ac9/JZH6p50t_j3-OUph4Wq6y.png" width="500">
130
+
131
+ ## Overview
132
+
133
+ **ANIMA** (Advanced Nature Inspired Multidisciplinary Assistant) is an expert in various scientific disciplines, including but not limited to biomimicry, biology, and environmental science.
134
+
135
+ **Instagram: [@anima_llm](https://www.instagram.com/anima_llm)**
136
+
137
+ ---
138
+
139
+ ## Model Description
140
+
141
+ ANIMA is fine-tuned on a rich dataset encompassing:
142
+
143
+ - 4,000+ Nature-Biomimicry examples
144
+ - 60k Biomimicry Design Process examples
145
+ - 600k STEM facts from Wikipedia
146
+ - Science/Philosophy focused 'All-You-Need-Is-Textbooks' dataset
147
+ - Additional Tree of Knowledge + Biomimicry data combined fine-tuning
148
+
149
+ The model aims to assist users in solving problems using nature-inspired strategies and concepts.
150
+
151
+ ### Special Features
152
+
153
+ - **Multi-disciplinary Expertise**: Knowledge across various scientific and philosophical domains.
154
+ - **Biomimicry Design Process**: Incorporates a dataset generated by Mistral and Minotaur-15B. The dataset was then intricately processed by a real person to ensure factuality and grounding.
155
+
156
+ ---
157
+
158
+ - Here is a link to The Bloke's GGUF version: [ANIMA-Phi-Neptune-Mistral-7B-GGUF](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF)
159
+
160
+
161
+ - ANIMA is also available using Ollama - Download the [OLLAMA](https://ollama.ai/) App (MacOS & Linux) and then run this command in your Terminal '**ollama pull severian/anima**' to download the model and then run this command '**ollama run severian/anima**' to load the model and start talking.
162
+
163
+
164
+ - You can also download and use the model with [LM Studio](https://lmstudio.ai/) (All OS systems). Just download the app and then search for 'ANIMA GGUF' in the search bar and you will have a list of versions to choose from.
165
+
166
+
167
+ - Want to test ANIMA + Ollama and chat right away? Download the model from Ollama and head here to chat with ANIMA right in your browser! [ANIMA - Chat](https://severian42.github.io/ANIMA-Chat/)
168
+
169
+ - Have a PDF you want to discuss with ANIMA + Ollama? Head here and you can do just that in your browser, 100% locally. [ANIMA - Locally Chat over your PDF](https://ANIMA-pdf-chat.vercel.app/)
170
+
171
+ - ANIMA is also being hosted on a Hugging Face Space if you'd like to try it there (It may be slow to generate a respone but it still works just fine) [ANIMA - HF Space](https://huggingface.co/spaces/Severian/ANIMA-7B-Biomimicry-LLM)
172
+
173
+ - **Contact**
174
+
175
+ If you want to discuss the model/dataset/concept further, have any cool ideas, want to collaborate or if you run into any issues with the model, please don't hesitate to reach out at [email protected]
176
+
177
+ ## Datasets
178
+
179
+ - `Severian/Biomimicry` (1st Fine-Tune)
180
+ - `emrgnt-cmplxty/sciphi-textbooks-are-all-you-need` (2nd Fine-Tune)
181
+ - `Severian/Bio-Design-Process` & `fmars/wiki_stem` (3rd Fine-Tune)
182
+ - `fblgit/tree-of-knowledge` & `Severian/Biomimicry` (4th Fine-Tune)
183
+ - `Combined all previous datasets` into one giant dataset for a quick fine-tuning for a total of 730k data points (5th Fine-Tune)
184
+
185
+ ## Training Stages
186
+
187
+ 1. **Base Model**: `ehartford/dolphin-2.0-mistral-7b`
188
+ 2. **1st Fine-Tune**: `ANIMA-Echo-Mistral-7B-v1` - 1 Epoch x 5hrs on 1 x T4 Small
189
+ 3. **2nd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-v1`-: 1 Epoch x 1hr on 1 x A100
190
+ 4. **3rd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-7B-v2` - 1 Epoch x 1hr on 1 x A100
191
+ 5. **4th Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-7B-v3` - 1 Epoch x 1hr on 1 x A100
192
+ 6. **5th Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-7B-v4` - 1 Epoch x 15mins on 1 x A100
193
+
194
+ ---
195
+
196
+ ## 📝 Usage
197
+
198
+ ANIMA is designed around the Biomimicry Design Process to guide users in solving problems through biomimicry. For more information and examples, please visit [Biomimicry Design Process](https://toolbox.biomimicry.org/methods/process/).
199
+
200
+ ## 🏁 Benchmarks
201
+
202
+ - Average - 62.22
203
+ - ARC - 56.83
204
+ - HellaSwag - 78.82
205
+ - MMLU - 53.84
206
+ - TruthfulQA - 59.40
207
+
208
+ ---
209
+
210
+ - **EXAMPLE OUTPUT**
211
+
212
+ [INST] How can biomimicry help in water purification? [/INST]
213
+
214
+ Biomimicry plays a significant role in water purification by taking
215
+ inspiration from natural processes and organisms to develop sustainable
216
+ and efficient solutions. Here's a comprehensive overview of how biomimicry
217
+ can help in water purification:
218
+
219
+ 1. Microbial filtration:
220
+ - Bacteriophages (viruses that infect bacteria) can effectively target
221
+ contaminants in water systems, such as Escherichia coli and Staphylococcus
222
+ aureus. By mimicking the natural defense mechanisms of bacteriophages, we
223
+ can develop efficient filtration systems that remove pollutants from water
224
+ sources.
225
+ - Some fungi, such as Trametes versicolor, can break down organic
226
+ pollutants in water using enzymes. This process helps make contaminated
227
+ water safe for consumption. By studying and replicating these natural
228
+ processes, we can develop sustainable filtration systems that remove
229
+ pollutants from water sources effectively.
230
+
231
+ 2. Biofilm-based filtration:
232
+ - Microorganisms form biofilms on surfaces to protect themselves from
233
+ environmental threats like predators or contaminants. By mimicking the
234
+ natural formation of biofilms, we can develop sustainable filtration
235
+ systems that use bacteria or fungi to remove pollutants from water
236
+ sources.
237
+ - For example, a study has shown how Pseudomonas putida could
238
+ be used to biodegrade petroleum hydrocarbons in contaminated water sources
239
+ using a biofilm-based system. This method offers an eco-friendly
240
+ alternative to conventional chemical treatments for oil spills.
241
+
242
+ 3. Wetland-based filtration:
243
+ - Wetlands act as natural filters for water by retaining sediments and
244
+ organic matter, which helps remove contaminants. By mimicking the natural
245
+ processes of a wetland, we can design effective water purification systems
246
+ that use sand filters or engineered wetlands to remove pollutants. For
247
+ instance, a study has shown how reed beds can be used for water filtration
248
+ by using them as a natural treatment system for agricultural wastewater.
249
+
250
+ 4. Sponge filtration:
251
+ - Some marine sponges (e.g., sea sponge) have evolved sophisticated
252
+ mechanisms to filter out particles and contaminants from the surrounding
253
+ water. By studying these natural filtration processes, we can develop
254
+ efficient and sustainable filtration systems that remove pollutants
255
+ effectively. For example, a study has shown how sea sponges can be used as
256
+ a model for designing a low-cost, self-sustaining water purification
257
+ system that uses solar energy to disinfect contaminated water.
258
+
259
+ 5. Biodegradable materials:
260
+ - Natural organisms have evolved biodegradable materials to protect
261
+ themselves from predators or environmental threats. For instance, some
262
+ insects produce natural pesticides (such as alkaloids) to defend
263
+ themselves against predators. Similarly, we can develop biodegradable
264
+ materials that release these natural pesticides in contaminated water
265
+ sources, killing off contaminants and restoring the environment's health.
266
+ - For example, a study has shown how bacterial cells can be used as a
267
+ natural filtration system to remove contaminants from water sources by
268
+ incorporating them into membranes that selectively remove organic
269
+ pollutants.
270
+
271
+ In conclusion, biomimicry plays a vital role in water purification by
272
+ using natural processes and organisms as inspiration for developing
273
+ sustainable and efficient solutions. By studying the natural filtration
274
+ mechanisms of microorganisms, plants, animals, and other living organisms,
275
+ we can design eco-friendly and cost-effective water purification systems
276
+ that help protect our environment from contamination.
277
+
278
+ ---
279
+
280
+ ### ***[Help Support ANIMA](https://www.buymeacoffee.com/anima7b)***
281
+
282
+ ---
283
+
284
+ - **KNOWN ISSUES**
285
+
286
+ The model will sometimes respond to itself and continue the conversation taking both the user and AI roles. This is a known issue in the Mistral model but does not happen very often.
287
+
288
+ ## 📜 License
289
+
290
+ This project is licensed under Artistic-2.0
291
+
292
+ **This model is for research purposes only and restricted from any commercial use**
293
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
294
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Severian__ANIMA-Phi-Neptune-Mistral-7B-v4)
295
+
296
+ | Metric |Value|
297
+ |---------------------------------|----:|
298
+ |Avg. |55.61|
299
+ |AI2 Reasoning Challenge (25-Shot)|55.46|
300
+ |HellaSwag (10-Shot) |77.63|
301
+ |MMLU (5-Shot) |53.12|
302
+ |TruthfulQA (0-shot) |59.01|
303
+ |Winogrande (5-shot) |73.48|
304
+ |GSM8k (5-shot) |14.94|
305
+
anima-phi-neptune-mistral-7b.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de5037215e021cb2d44564cd91b602607b8f8d58448f337a920122c7c4cc1cef
3
+ size 4108917152