Text Generation
Transformers
GGUF
code
Eval Results
Inference Endpoints
mav23 commited on
Commit
b4f46ee
1 Parent(s): be54654

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +214 -0
  3. starcoder2-3b.Q4_0.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ starcoder2-3b.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ widget:
5
+ - text: 'def print_hello_world():'
6
+ example_title: Hello world
7
+ group: Python
8
+ datasets:
9
+ - bigcode/the-stack-v2-train
10
+ license: bigcode-openrail-m
11
+ library_name: transformers
12
+ tags:
13
+ - code
14
+ model-index:
15
+ - name: starcoder2-3b
16
+ results:
17
+ - task:
18
+ type: text-generation
19
+ dataset:
20
+ name: CruxEval-I
21
+ type: cruxeval-i
22
+ metrics:
23
+ - type: pass@1
24
+ value: 32.7
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: DS-1000
29
+ type: ds-1000
30
+ metrics:
31
+ - type: pass@1
32
+ value: 25.0
33
+ - task:
34
+ type: text-generation
35
+ dataset:
36
+ name: GSM8K (PAL)
37
+ type: gsm8k-pal
38
+ metrics:
39
+ - type: accuracy
40
+ value: 27.7
41
+ - task:
42
+ type: text-generation
43
+ dataset:
44
+ name: HumanEval+
45
+ type: humanevalplus
46
+ metrics:
47
+ - type: pass@1
48
+ value: 27.4
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: HumanEval
53
+ type: humaneval
54
+ metrics:
55
+ - type: pass@1
56
+ value: 31.7
57
+ - task:
58
+ type: text-generation
59
+ dataset:
60
+ name: RepoBench-v1.1
61
+ type: repobench-v1.1
62
+ metrics:
63
+ - type: edit-smiliarity
64
+ value: 71.19
65
+ ---
66
+
67
+ # StarCoder2
68
+
69
+ <center>
70
+ <img src="https://huggingface.co/datasets/bigcode/admin_private/resolve/main/starcoder2_banner.png" alt="SC2" width="900" height="600">
71
+ </center>
72
+
73
+ ## Table of Contents
74
+
75
+ 1. [Model Summary](##model-summary)
76
+ 2. [Use](##use)
77
+ 3. [Limitations](##limitations)
78
+ 4. [Training](##training)
79
+ 5. [License](##license)
80
+ 6. [Citation](##citation)
81
+
82
+ ## Model Summary
83
+
84
+ StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train), with opt-out requests excluded. The model uses [Grouped Query Attention](https://arxiv.org/abs/2305.13245), [a context window of 16,384 tokens](https://arxiv.org/abs/2205.14135) with [a sliding window attention of 4,096 tokens](https://arxiv.org/abs/2004.05150v2), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 3+ trillion tokens.
85
+
86
+ - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
87
+ - **Paper:** [Link](https://huggingface.co/papers/2402.19173)
88
+ - **Point of Contact:** [[email protected]](mailto:[email protected])
89
+ - **Languages:** 17 Programming languages
90
+
91
+ ## Use
92
+
93
+ ### Intended use
94
+
95
+ The model was trained on GitHub code as well as additional selected data sources such as Arxiv and Wikipedia. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well.
96
+
97
+ ### Generation
98
+ Here are some examples to get started with the model. You can find a script for fine-tuning in StarCoder2's [GitHub repository](https://github.com/bigcode-project/starcoder2).
99
+
100
+ First, make sure to install `transformers` from source:
101
+ ```bash
102
+ pip install git+https://github.com/huggingface/transformers.git
103
+ ```
104
+
105
+ #### Running the model on CPU/GPU/multi GPU
106
+ * _Using full precision_
107
+ ```python
108
+ # pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main
109
+ from transformers import AutoModelForCausalLM, AutoTokenizer
110
+
111
+ checkpoint = "bigcode/starcoder2-3b"
112
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
113
+
114
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
115
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
116
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
117
+
118
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
119
+ outputs = model.generate(inputs)
120
+ print(tokenizer.decode(outputs[0]))
121
+ ```
122
+ ```bash
123
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
124
+ Memory footprint: 12624.81 MB
125
+ ```
126
+ * _Using `torch.bfloat16`_
127
+ ```python
128
+ # pip install accelerate
129
+ import torch
130
+ from transformers import AutoTokenizer, AutoModelForCausalLM
131
+
132
+ checkpoint = "bigcode/starcoder2-3b"
133
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
134
+
135
+ # for fp16 use `torch_dtype=torch.float16` instead
136
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
137
+
138
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
139
+ outputs = model.generate(inputs)
140
+ print(tokenizer.decode(outputs[0]))
141
+ ```
142
+ ```bash
143
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
144
+ Memory footprint: 6312.41 MB
145
+ ```
146
+
147
+ #### Quantized Versions through `bitsandbytes`
148
+ * _Using 8-bit precision (int8)_
149
+
150
+ ```python
151
+ # pip install bitsandbytes accelerate
152
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
153
+
154
+ # to use 4bit use `load_in_4bit=True` instead
155
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
156
+
157
+ checkpoint = "bigcode/starcoder2-3b"
158
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
159
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config)
160
+
161
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
162
+ outputs = model.generate(inputs)
163
+ print(tokenizer.decode(outputs[0]))
164
+ ```
165
+ ```bash
166
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
167
+ # load_in_8bit
168
+ Memory footprint: 3434.07 MB
169
+ # load_in_4bit
170
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
171
+ Memory footprint: 1994.90 MB
172
+ ```
173
+ ### Attribution & Other Requirements
174
+
175
+ The pretraining dataset of the model was filtered for permissive licenses and code with no license only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/search-v2) that lets you search through the pretraining data to identify where the generated code came from, and apply the proper attribution to your code.
176
+
177
+ # Limitations
178
+
179
+ The model has been trained on source code from 600+ programming languages. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://huggingface.co/papers/2402.19173) for an in-depth discussion of the model limitations.
180
+
181
+ # Training
182
+
183
+ ## Model
184
+
185
+ - **Architecture:** Transformer decoder with grouped-query and sliding window attention and Fill-in-the-Middle objective
186
+ - **Pretraining steps:** 1.2 million
187
+ - **Pretraining tokens:** 3+ trillion
188
+ - **Precision:** bfloat16
189
+
190
+ ## Hardware
191
+
192
+ - **GPUs:** 160 A100
193
+
194
+ ## Software
195
+
196
+ - **Framework:** TODO
197
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
198
+
199
+ # License
200
+
201
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
202
+
203
+ # Citation
204
+
205
+ ```bash
206
+ @misc{lozhkov2024starcoder,
207
+ title={StarCoder 2 and The Stack v2: The Next Generation},
208
+ author={Anton Lozhkov and Raymond Li and Loubna Ben Allal and Federico Cassano and Joel Lamy-Poirier and Nouamane Tazi and Ao Tang and Dmytro Pykhtar and Jiawei Liu and Yuxiang Wei and Tianyang Liu and Max Tian and Denis Kocetkov and Arthur Zucker and Younes Belkada and Zijian Wang and Qian Liu and Dmitry Abulkhanov and Indraneil Paul and Zhuang Li and Wen-Ding Li and Megan Risdal and Jia Li and Jian Zhu and Terry Yue Zhuo and Evgenii Zheltonozhskii and Nii Osae Osae Dade and Wenhao Yu and Lucas Krauß and Naman Jain and Yixuan Su and Xuanli He and Manan Dey and Edoardo Abati and Yekun Chai and Niklas Muennighoff and Xiangru Tang and Muhtasham Oblokulov and Christopher Akiki and Marc Marone and Chenghao Mou and Mayank Mishra and Alex Gu and Binyuan Hui and Tri Dao and Armel Zebaze and Olivier Dehaene and Nicolas Patry and Canwen Xu and Julian McAuley and Han Hu and Torsten Scholak and Sebastien Paquet and Jennifer Robinson and Carolyn Jane Anderson and Nicolas Chapados and Mostofa Patwary and Nima Tajbakhsh and Yacine Jernite and Carlos Muñoz Ferrandis and Lingming Zhang and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
209
+ year={2024},
210
+ eprint={2402.19173},
211
+ archivePrefix={arXiv},
212
+ primaryClass={cs.SE}
213
+ }
214
+ ```
starcoder2-3b.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c88abdf3db5f15b044d401b3cc6fc8bc03c17801138f6dfc27a8c65c7bdc36f3
3
+ size 1748817344