--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-50pct-2024-12-01-T13-47-07 results: [] --- # biobert-v1.1-finetuned-medmcqa-50pct-2024-12-01-T13-47-07 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9205 - Accuracy: 0.5761 - F1: 0.5771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.7473 | 0.9998 | 2856 | 0.9545 | 0.5446 | 0.5449 | | 0.6317 | 1.9996 | 5712 | 0.9094 | 0.5663 | 0.5675 | | 0.4156 | 2.9995 | 8568 | 0.9205 | 0.5761 | 0.5771 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3