patrickvonplaten
commited on
Commit
·
aaab379
1
Parent(s):
698a3d1
Update README.md
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
-
value: 12.
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-German
|
@@ -123,30 +123,30 @@ processor = Wav2Vec2Processor.from_pretrained("maxidl/wav2vec2-large-xlsr-german
|
|
123 |
model = Wav2Vec2ForCTC.from_pretrained("maxidl/wav2vec2-large-xlsr-german")
|
124 |
model.to("cuda")
|
125 |
|
126 |
-
chars_to_ignore_regex = '[
|
127 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
128 |
|
129 |
# Preprocessing the datasets.
|
130 |
# We need to read the aduio files as arrays
|
131 |
def speech_file_to_array_fn(batch):
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
138 |
|
139 |
# Preprocessing the datasets.
|
140 |
# We need to read the audio files as arrays
|
141 |
def evaluate(batch):
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
|
151 |
result = test_dataset.map(evaluate, batched=True, batch_size=8) # batch_size=8 -> requires ~14.5GB GPU memory
|
152 |
|
@@ -176,7 +176,7 @@ print("Total (chunk_size=1000), WER: {:2f}".format(100 * chunked_wer(result["pre
|
|
176 |
# Total (chunk=1000), WER: 12.768981
|
177 |
```
|
178 |
|
179 |
-
**Test Result**: WER: 12.
|
180 |
|
181 |
|
182 |
## Training
|
@@ -187,32 +187,32 @@ The model was trained for 50k steps, taking around 30 hours on a single A100.
|
|
187 |
|
188 |
The arguments used for training this model are:
|
189 |
```
|
190 |
-
python run_finetuning.py
|
191 |
-
--model_name_or_path="facebook/wav2vec2-large-xlsr-53"
|
192 |
-
--dataset_config_name="de"
|
193 |
-
--output_dir=./wav2vec2-large-xlsr-german
|
194 |
-
--preprocessing_num_workers="16"
|
195 |
-
--overwrite_output_dir
|
196 |
-
--num_train_epochs="20"
|
197 |
-
--per_device_train_batch_size="64"
|
198 |
-
--per_device_eval_batch_size="32"
|
199 |
-
--learning_rate="1e-4"
|
200 |
-
--warmup_steps="500"
|
201 |
-
--evaluation_strategy="steps"
|
202 |
-
--save_steps="5000"
|
203 |
-
--eval_steps="5000"
|
204 |
-
--logging_steps="1000"
|
205 |
-
--save_total_limit="3"
|
206 |
-
--freeze_feature_extractor
|
207 |
-
--activation_dropout="0.055"
|
208 |
-
--attention_dropout="0.094"
|
209 |
-
--feat_proj_dropout="0.04"
|
210 |
-
--layerdrop="0.04"
|
211 |
-
--mask_time_prob="0.08"
|
212 |
-
--gradient_checkpointing="1"
|
213 |
-
--fp16
|
214 |
-
--do_train
|
215 |
-
--do_eval
|
216 |
-
--dataloader_num_workers="16"
|
217 |
--group_by_length
|
218 |
```
|
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
+
value: 12.77
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-German
|
|
|
123 |
model = Wav2Vec2ForCTC.from_pretrained("maxidl/wav2vec2-large-xlsr-german")
|
124 |
model.to("cuda")
|
125 |
|
126 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
|
127 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
128 |
|
129 |
# Preprocessing the datasets.
|
130 |
# We need to read the aduio files as arrays
|
131 |
def speech_file_to_array_fn(batch):
|
132 |
+
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
133 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
134 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
135 |
+
\treturn batch
|
136 |
|
137 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
138 |
|
139 |
# Preprocessing the datasets.
|
140 |
# We need to read the audio files as arrays
|
141 |
def evaluate(batch):
|
142 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
143 |
|
144 |
+
\twith torch.no_grad():
|
145 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
146 |
|
147 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
148 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
149 |
+
\treturn batch
|
150 |
|
151 |
result = test_dataset.map(evaluate, batched=True, batch_size=8) # batch_size=8 -> requires ~14.5GB GPU memory
|
152 |
|
|
|
176 |
# Total (chunk=1000), WER: 12.768981
|
177 |
```
|
178 |
|
179 |
+
**Test Result**: WER: 12.77 %
|
180 |
|
181 |
|
182 |
## Training
|
|
|
187 |
|
188 |
The arguments used for training this model are:
|
189 |
```
|
190 |
+
python run_finetuning.py \\
|
191 |
+
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \\
|
192 |
+
--dataset_config_name="de" \\
|
193 |
+
--output_dir=./wav2vec2-large-xlsr-german \\
|
194 |
+
--preprocessing_num_workers="16" \\
|
195 |
+
--overwrite_output_dir \\
|
196 |
+
--num_train_epochs="20" \\
|
197 |
+
--per_device_train_batch_size="64" \\
|
198 |
+
--per_device_eval_batch_size="32" \\
|
199 |
+
--learning_rate="1e-4" \\
|
200 |
+
--warmup_steps="500" \\
|
201 |
+
--evaluation_strategy="steps" \\
|
202 |
+
--save_steps="5000" \\
|
203 |
+
--eval_steps="5000" \\
|
204 |
+
--logging_steps="1000" \\
|
205 |
+
--save_total_limit="3" \\
|
206 |
+
--freeze_feature_extractor \\
|
207 |
+
--activation_dropout="0.055" \\
|
208 |
+
--attention_dropout="0.094" \\
|
209 |
+
--feat_proj_dropout="0.04" \\
|
210 |
+
--layerdrop="0.04" \\
|
211 |
+
--mask_time_prob="0.08" \\
|
212 |
+
--gradient_checkpointing="1" \\
|
213 |
+
--fp16 \\
|
214 |
+
--do_train \\
|
215 |
+
--do_eval \\
|
216 |
+
--dataloader_num_workers="16" \\
|
217 |
--group_by_length
|
218 |
```
|