File size: 3,407 Bytes
29b90f9 f40898c c70c9c0 f40898c 29b90f9 0c1daec ddac90d e8f75e2 2317849 6faa183 2d1074d b27c7ac 344d039 e2c99e8 d7c464b fba263b 309d264 6e13f00 9944e35 03a1fba ca026ed a9f0c84 c70c9c0 f40898c 29b90f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: maxime7770/model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# maxime7770/model
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1211
- Validation Loss: 0.4812
- Epoch: 49
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 650, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5966 | 1.5898 | 0 |
| 1.5577 | 1.5576 | 1 |
| 1.5034 | 1.4761 | 2 |
| 1.4034 | 1.3538 | 3 |
| 1.2864 | 1.2163 | 4 |
| 1.1502 | 1.0980 | 5 |
| 1.0085 | 0.9988 | 6 |
| 0.8828 | 0.9130 | 7 |
| 0.7863 | 0.8445 | 8 |
| 0.7036 | 0.7871 | 9 |
| 0.6322 | 0.7399 | 10 |
| 0.5731 | 0.7030 | 11 |
| 0.5180 | 0.6714 | 12 |
| 0.4757 | 0.6432 | 13 |
| 0.4366 | 0.6204 | 14 |
| 0.4057 | 0.6006 | 15 |
| 0.3743 | 0.5827 | 16 |
| 0.3475 | 0.5689 | 17 |
| 0.3221 | 0.5577 | 18 |
| 0.2971 | 0.5467 | 19 |
| 0.2815 | 0.5372 | 20 |
| 0.2700 | 0.5297 | 21 |
| 0.2521 | 0.5225 | 22 |
| 0.2343 | 0.5168 | 23 |
| 0.2265 | 0.5117 | 24 |
| 0.2143 | 0.5074 | 25 |
| 0.2063 | 0.5038 | 26 |
| 0.1941 | 0.5001 | 27 |
| 0.1843 | 0.4976 | 28 |
| 0.1782 | 0.4949 | 29 |
| 0.2012 | 0.4938 | 30 |
| 0.1691 | 0.4930 | 31 |
| 0.1626 | 0.4910 | 32 |
| 0.1884 | 0.4886 | 33 |
| 0.1547 | 0.4870 | 34 |
| 0.1492 | 0.4858 | 35 |
| 0.1445 | 0.4850 | 36 |
| 0.1415 | 0.4842 | 37 |
| 0.1383 | 0.4836 | 38 |
| 0.1374 | 0.4832 | 39 |
| 0.1336 | 0.4826 | 40 |
| 0.1322 | 0.4823 | 41 |
| 0.1295 | 0.4820 | 42 |
| 0.1268 | 0.4818 | 43 |
| 0.1261 | 0.4816 | 44 |
| 0.1253 | 0.4815 | 45 |
| 0.1275 | 0.4814 | 46 |
| 0.1247 | 0.4812 | 47 |
| 0.1256 | 0.4812 | 48 |
| 0.1211 | 0.4812 | 49 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|