--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - mlabonne/AlphaMonarch-7B - bardsai/jaskier-7b-dpo-v5.6 base_model: - mlabonne/AlphaMonarch-7B - bardsai/jaskier-7b-dpo-v5.6 --- # ExpertRamonda-7Bx2_MoE ExpertRamonda-7Bx2_MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [bardsai/jaskier-7b-dpo-v5.6](https://huggingface.co/bardsai/jaskier-7b-dpo-v5.6) ## 🧩 Configuration ```yaml base_model: mlabonne/AlphaMonarch-7B gate_mode: hidden dtype: bfloat16 experts_per_token: 2 experts: - source_model: mlabonne/AlphaMonarch-7B positive_prompts: - "You excel at reasoning skills. For every prompt you think of an answer from 3 different angles" ## (optional) # negative_prompts: # - "This is a prompt expert_model_1 should not be used for" - source_model: bardsai/jaskier-7b-dpo-v5.6 positive_prompts: - "You excel at logic and reasoning skills. Reply in a straightforward and concise way" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/ExpertRamonda-7Bx2_MoE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```