--- tags: - merge - mergekit - lazymergekit - DiscoResearch/DiscoLM_German_7b_v1 - DRXD1000/Phoenix - VAGOsolutions/SauerkrautLM-7b-v1-mistral - malteos/hermeo-7b base_model: - DiscoResearch/DiscoLM_German_7b_v1 - DRXD1000/Phoenix - VAGOsolutions/SauerkrautLM-7b-v1-mistral - malteos/hermeo-7b --- # Wiedervereinigung-7b-dpo-laser ![image/png](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b/resolve/main/Wiedervereinigung-7b.png) Some of the best german models with 7b parameters as lasered dpo-trained dare_ties merge. Since the original models based on mistral - three of them on the brilliant german LeoLM/leo-mistral-hessianai-7b - they are reunited in this merged model. Hence the name. To improve result quality they are dpo-trained with a german translation of oaast-dpo using our german fork of [LLaMA-Factory](https://github.com/mayflower/LLaMA-Factory). After that this model got a [laserRMT](https://github.com/cognitivecomputations/laserRMT) treatment. Wiedervereinigung-7b itself is a [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) merge of: * [DiscoResearch/DiscoLM_German_7b_v1](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1) * [DRXD1000/Phoenix](https://huggingface.co/DRXD1000/Phoenix) * [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral) * [malteos/hermeo-7b](https://huggingface.co/malteos/hermeo-7b) All the actual heavylifting has been done by the creators of these models. ## 🧩 Configuration ```yaml models: - model: LeoLM/leo-mistral-hessianai-7b # No parameters necessary for base model - model: DiscoResearch/DiscoLM_German_7b_v1 parameters: density: 0.6 weight: 0.25 - model: DRXD1000/Phoenix parameters: density: 0.6 weight: 0.25 - model: VAGOsolutions/SauerkrautLM-7b-v1-mistral parameters: density: 0.6 weight: 0.25 - model: malteos/hermeo-7b parameters: density: 0.6 weight: 0.25 merge_method: dare_ties base_model: LeoLM/leo-mistral-hessianai-7b parameters: int8_mask: true dtype: bfloat16 ``` ## mt-bench-de Using laser and dpo results in pretty good results. ```json { "first_turn": 7.51875, "second_turn": 6.4, "categories": { "writing": 8.425, "roleplay": 8.025, "reasoning": 5.45, "math": 3.2, "coding": 4.95, "extraction": 7.525, "stem": 8.775, "humanities": 9.325 }, "average": 6.959375 } ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayflowergmbh/Wiedervereinigung-7b-dpo-laser" messages = [{"role": "user", "content": "Was ist ein large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```