mbayan commited on
Commit
cfa6c55
·
verified ·
1 Parent(s): 278fc2b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -165
README.md CHANGED
@@ -1,199 +1,124 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - Legal
5
+ - court
6
+ - prediction
7
+ - Arabic
8
+ - NLP
9
+ datasets:
10
+ - mbayan/Arabic-LJP
11
+ language:
12
+ - ar
13
+ base_model:
14
+ - meta-llama/Llama-3.1-8B-Instruct
15
+ pipeline_tag: text-generation
16
  ---
17
 
18
+ # Arabic Legal Judgment Prediction Dataset
19
 
20
+ ## Overview
21
 
22
+ This dataset is designed for **Arabic Legal Judgment Prediction (LJP)**, collected and preprocessed from **Saudi commercial court judgments**. It serves as a benchmark for evaluating Large Language Models (LLMs) in the legal domain, particularly in low-resource settings.
23
 
24
+ The dataset is released as part of our research:
25
 
26
+ > **Can Large Language Models Predict the Outcome of Judicial Decisions?**
27
+ > *Mohamed Bayan Kmainasi, Ali Ezzat Shahroor, and Amani Al-Ghraibah*
28
+ > [arXiv:2501.09768](https://arxiv.org/abs/2501.09768)
29
+ ## Model Usage
30
+ ```python
31
 
32
+ To use the model
33
+ from transformers import AutoTokenizer, AutoModelForCausalLM
34
 
35
+ tokenizer = AutoTokenizer.from_pretrained("mbayan/Llama-3.1-8b-ArLJP")
36
+ model = AutoModelForCausalLM.from_pretrained("mbayan/Llama-3.1-8b-ArLJP")
37
+ ```
38
 
39
+ ## Dataset Details
40
 
41
+ - **Size:** 3752 training samples, 538 test samples.
42
+ - **Annotations:** 75 diverse Arabic instructions generated using GPT-4o, varying in length and complexity.
43
+ - **Tasks Supported:**
44
+ - Zero-shot, One-shot, and Fine-tuning evaluation of Arabic legal text understanding.
 
 
 
45
 
46
+ ## Data Structure
47
 
48
+ The dataset is provided in a structured format:
49
 
50
+ ```python
51
+ from datasets import load_dataset
 
52
 
53
+ dataset = load_dataset("mbayan/Arabic-LJP")
54
+ print(dataset)
55
+ ```
56
 
57
+ The dataset contains:
58
+ - **train**: Training set with 3752 samples
59
+ - **test**: Test set with 538 samples
60
 
61
+ Each sample includes:
62
+ - **Input text:** Legal case description
63
+ - **Target text:** Judicial decision
64
 
65
+ ## Benchmark Results
66
 
67
+ We evaluated the dataset using **LLaMA-based models** with different configurations. Below is a summary of our findings:
68
 
69
+ | **Metric** | **LLaMA-3.2-3B** | **LLaMA-3.1-8B** | **LLaMA-3.2-3B-1S** | **LLaMA-3.2-3B-FT** | **LLaMA-3.1-8B-FT** |
70
+ |--------------------------|------------------|------------------|---------------------|---------------------|---------------------|
71
+ | **Coherence** | 2.69 | 5.49 | 4.52 | *6.60* | **6.94** |
72
+ | **Brevity** | 1.99 | 4.30 | 3.76 | *5.87* | **6.27** |
73
+ | **Legal Language** | 3.66 | 6.69 | 5.18 | *7.48* | **7.73** |
74
+ | **Faithfulness** | 3.00 | 5.99 | 4.00 | *6.08* | **6.42** |
75
+ | **Clarity** | 2.90 | 5.79 | 4.99 | *7.90* | **8.17** |
76
+ | **Consistency** | 3.04 | 5.93 | 5.14 | *8.47* | **8.65** |
77
+ | **Avg. Qualitative Score**| 3.01 | 5.89 | 4.66 | *7.13* | **7.44** |
78
+ | **ROUGE-1** | 0.08 | 0.12 | 0.29 | *0.50* | **0.53** |
79
+ | **ROUGE-2** | 0.02 | 0.04 | 0.19 | *0.39* | **0.41** |
80
+ | **BLEU** | 0.01 | 0.02 | 0.11 | *0.24* | **0.26** |
81
+ | **BERT** | 0.54 | 0.58 | 0.64 | *0.74* | **0.76** |
82
 
83
+ **Caption**: A comparative analysis of performance across different LLaMA models. The model names have been abbreviated for simplicity: **LLaMA-3.2-3B-Instruct** is represented as LLaMA-3.2-3B, **LLaMA-3.1-8B-Instruct** as LLaMA-3.1-8B, **LLaMA-3.2-3B-Instruct-1-Shot** as LLaMA-3.2-3B-1S, **LLaMA-3.2-3B-Instruct-Finetuned** as LLaMA-3.2-3B-FT, and **LLaMA-3.1-8B-Finetuned** as LLaMA-3.1-8B-FT.
84
 
85
+ ### **Key Findings**
86
+ - Fine-tuned smaller models (**LLaMA-3.2-3B-FT**) achieve performance **comparable to larger models** (LLaMA-3.1-8B).
87
+ - Instruction-tuned models with one-shot prompting (LLaMA-3.2-3B-1S) significantly improve over zero-shot settings.
88
+ - Fine-tuning leads to a noticeable boost in **coherence, clarity, and faithfulness** of predictions.
89
 
90
+ ## Usage
91
 
92
+ To use the dataset in your research, load it as follows:
93
 
94
+ ```python
95
+ from datasets import load_dataset
96
 
97
+ dataset = load_dataset("mbayan/Arabic-LJP")
98
 
99
+ # Access train and test splits
100
+ train_data = dataset["train"]
101
+ test_data = dataset["test"]
102
+ ```
103
 
104
+ ## Repository & Implementation
105
 
106
+ The full implementation, including preprocessing scripts and model training code, is available in our GitHub repository:
107
 
108
+ 🔗 **[GitHub](https://github.com/MohamedBayan/Arabic-Legal-Judgment-Prediction)**
109
 
110
+ ## Citation
111
 
112
+ If you use this dataset, please cite our work:
113
 
114
+ ```
115
+ @misc{kmainasi2025largelanguagemodelspredict,
116
+ title={Can Large Language Models Predict the Outcome of Judicial Decisions?},
117
+ author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Amani Al-Ghraibah},
118
+ year={2025},
119
+ eprint={2501.09768},
120
+ archivePrefix={arXiv},
121
+ primaryClass={cs.CL},
122
+ url={https://arxiv.org/abs/2501.09768},
123
+ }
124
+ ```