Text2Text Generation
Transformers
PyTorch
English
Kinyarwanda
m2m_100
Inference Endpoints
Kleber commited on
Commit
eef46be
1 Parent(s): cb9b634

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-2.0
3
+ datasets:
4
+ - mbazaNLP/NMT_Tourism_parallel_data_en_kin
5
+ - mbazaNLP/NMT_Education_parallel_data_en_kin
6
+ - mbazaNLP/Kinyarwanda_English_parallel_dataset
7
+ language:
8
+ - en
9
+ - rw
10
+ library_name: transformers
11
+ ---
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is a Machine Translation model, finetuned from [NLLB](https://huggingface.co/facebook/nllb-200-distilled-1.3B)-200's distilled 1.3B model, it is meant to be used in machine translation for education-related data.
19
+
20
+
21
+
22
+ - **Finetuning code repository:** the code used to finetune this model can be found [here](https://github.com/Digital-Umuganda/twb_nllb_finetuning)
23
+
24
+
25
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
26
+
27
+
28
+ ## How to Get Started with the Model
29
+
30
+ Use the code below to get started with the model.
31
+
32
+
33
+ ### Training Procedure
34
+
35
+ The model was finetuned on three datasets; a [general](https://huggingface.co/datasets/mbazaNLP/Kinyarwanda_English_parallel_dataset) purpose dataset, a [tourism](https://huggingface.co/datasets/mbazaNLP/NMT_Tourism_parallel_data_en_kin), and an [education](https://huggingface.co/datasets/mbazaNLP/NMT_Education_parallel_data_en_kin) dataset.
36
+ The model was finetuned on an A100 40GB GPU for two epochs.
37
+
38
+
39
+ ## Evaluation
40
+
41
+ <!-- This section describes the evaluation protocols and provides the results. -->
42
+
43
+
44
+ #### Testing Data
45
+
46
+ <!-- This should link to a Data Card if possible. -->
47
+
48
+
49
+ #### Metrics
50
+
51
+ Model performance was measured using BLEU, spBLEU, TER, and chrF++ metrics.
52
+
53
+ ### Results
54
+
55
+
56
+
57
+
58
+