--- pipeline_tag: automatic-speech-recognition datasets: - mozilla-foundation/common_voice_11_0 license: cc language: - rw metrics: - cer base_model: - openai/whisper-small tags: - STT - fine-tune-kinyarwanda - kinyarwanda --- # Model description This model is an openai's whisper-small model fine-tuned on the Kinyarwanda common-voice dataset. The Kinyarwanda language was added by fine-tuning on top of the Swahili language. It achieves a 24 WER. Currently, it does not provide Kinyarwanda-to-English translation. # Usage ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("mbazaNLP/Whisper-Small-Kinyarwanda") >>> model = WhisperForConditionalGeneration.from_pretrained("mbazaNLP/Whisper-Small-Kinyarwanda") >>> ds = load_dataset("common_voice", "rw", split="test", streaming=True) >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"]["array"] >>> model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language = "sw", task = "transcribe") >>> input_features = processor(input_speech, return_tensors="pt").input_features >>> predicted_ids = model.generate(input_features) >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|sw|><|transcribe|><|notimestamps|>Abamugariye ku rugamba bafashwa kubona insimburangingo<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens = True) ['Abamugariye ku rugamba bafashwa kubona insimburangingo'] ```