Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +97 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 293.62 +/- 11.92
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd166daa170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd166daa200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd166daa290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd166daa320>", "_build": "<function ActorCriticPolicy._build at 0x7fd166daa3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd166daa440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd166daa4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd166daa560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd166daa5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd166daa680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd166daa710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd166d9fd00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVOwEAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGgbihCIAOg4TJu6SMEsEgiNaJpwjANpbmOUihGJpUa6GjRyx3BJuCCfMIHgAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "n": 4, "start": 0, "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "num_timesteps": 1874400, "_total_timesteps": 2097152, "_num_timesteps_at_start": 0, "seed": 497534116, "action_noise": null, "start_time": 1670777594426917397, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNS/bwprS898Ao9Ps25IL65HHs9PA4WPQAAAAAAAAAAjUkMvlrHnD8OWpC+NOowvyY6gb4u6B+9AAAAAAAAAAAzRlC9HMNVvOouXj01nXY809vDvdeuSj0AAIA/AACAP1pnJz5/THo/XtvDvfaG/r6JJrk+VVmavgAAAAAAAAAAZn6uu/Nkuz/u3re9C1WnPv2oxjsIsqQ8AAAAAAAAAABmhFU9xqXHPrBYdL5N6Oe+yqK9vZXHAL4AAAAAAAAAAADcnDt26rg/plTGPfaofD6oTbK7aq2xvAAAAAAAAAAAM336PXFNX7lKoeK7BlLfuO52VbrGzBW6AAAAAAAAAAAAILS86EuWPfod6DzkHa2+HOdMvd168rwAAAAAAAAAADP1qLz3VQ4+nWngPGNBqL4pUMS980rTPQAAAAAAAAAARiQxvpjBsD4SYQQ+npDOvly8vL0b1W09AAAAAAAAAABmmKs8wFGvP9rZHz7AQJm+gFZgPC6RvD0AAAAAAAAAAADA1DopJCO6pyW7s6IdF6zOgiM7Fj3JMwAAgD8AAIA/gKCUPdYSUj8drBe+30DMvvSIjz3oxFG+AAAAAAAAAACmRJW++8U6P1HOKb28Bxq/ElinvkQ3GD4AAAAAAAAAAMD7yz0oXKc/ETGCPva6s77Pd0U+JtZnPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.109375, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZJC7CBMccUCUhpRSlIwBbJRL04wBdJRHQKGBp3Dej211fZQoaAZoCWgPQwi2SrA4nNkLwJSGlFKUaBVLaWgWR0ChjYzxG2CvdX2UKGgGaAloD0MIPNwODQtLckCUhpRSlGgVS+loFkdAoY3sewLVnXV9lChoBmgJaA9DCEH1DyIZmHJAlIaUUpRoFUvTaBZHQKGOatoSL611fZQoaAZoCWgPQwhmMhzPJyJyQJSGlFKUaBVL82gWR0Chjne/Ho5hdX2UKGgGaAloD0MI1eqrq4I0ZkCUhpRSlGgVTbICaBZHQKGOufq5byJ1fZQoaAZoCWgPQwjgumJGeO9uQJSGlFKUaBVLy2gWR0ChjrlKTSssdX2UKGgGaAloD0MIavrsgOvycECUhpRSlGgVS+1oFkdAoY7xd0JWvXV9lChoBmgJaA9DCBbD1QEQTXFAlIaUUpRoFUvuaBZHQKGPDf4yoGZ1fZQoaAZoCWgPQwifc7frpS1xQJSGlFKUaBVL6WgWR0Chjylkxyn2dX2UKGgGaAloD0MI/oFy2/55ckCUhpRSlGgVTdoBaBZHQKGPh0NjLB91fZQoaAZoCWgPQwgvNUI/EzhxQJSGlFKUaBVL1mgWR0Chj/A8r7O3dX2UKGgGaAloD0MI8z0jEZqob0CUhpRSlGgVS+xoFkdAoZBC9PDYRXV9lChoBmgJaA9DCDbJj/hVPXJAlIaUUpRoFUvVaBZHQKGQggNgBtF1fZQoaAZoCWgPQwiEhChfkH9yQJSGlFKUaBVNCQFoFkdAoZCPa11GLHV9lChoBmgJaA9DCL3kf/K3VnFAlIaUUpRoFUvnaBZHQKGQ69ic5Kh1fZQoaAZoCWgPQwhfYizTL3dQQJSGlFKUaBVLkGgWR0ChkTJF1B+ndX2UKGgGaAloD0MIPbmmQGavKsCUhpRSlGgVS31oFkdAoZGmRA8jiXV9lChoBmgJaA9DCBssnKQ5xnJAlIaUUpRoFUvDaBZHQKGRx3ai9Ix1fZQoaAZoCWgPQwi4sdmRaoFwQJSGlFKUaBVL5GgWR0Chkc6qCHymdX2UKGgGaAloD0MIgEi/fZ3cckCUhpRSlGgVS99oFkdAoZIizXz19XV9lChoBmgJaA9DCFxUi4giYnBAlIaUUpRoFUvLaBZHQKGSXGbTc7B1fZQoaAZoCWgPQwhORpVh3EpXQJSGlFKUaBVLs2gWR0Chks3j+717dX2UKGgGaAloD0MIZJKRs3CRcUCUhpRSlGgVTQIBaBZHQKGS1gfEGaB1fZQoaAZoCWgPQwhTl4xj5ExzQJSGlFKUaBVL6GgWR0ChkvB99c8ldX2UKGgGaAloD0MIjKNyEzWDckCUhpRSlGgVTQIBaBZHQKGTJxZuAI91fZQoaAZoCWgPQwgYIxKFFt9zQJSGlFKUaBVLzWgWR0Chk6+KTB69dX2UKGgGaAloD0MIJnMs76qlR0CUhpRSlGgVS4xoFkdAoZQbuhK15XV9lChoBmgJaA9DCN2XM9vVKHJAlIaUUpRoFUvUaBZHQKGULu4wyqN1fZQoaAZoCWgPQwgwRiQKLatxQJSGlFKUaBVL02gWR0ChlDktuk1udX2UKGgGaAloD0MIniees8XzcECUhpRSlGgVS95oFkdAoZSb0SRKYnV9lChoBmgJaA9DCGH9n8M8rHBAlIaUUpRoFU0FAWgWR0ChlWr2g398dX2UKGgGaAloD0MIeoocIi5pcUCUhpRSlGgVS8poFkdAoZWA84gieXV9lChoBmgJaA9DCGO1+X/VLFRAlIaUUpRoFUucaBZHQKGVir5IpYt1fZQoaAZoCWgPQwjFVtC0xHo5QJSGlFKUaBVLZGgWR0ChlaOFpPAPdX2UKGgGaAloD0MIkUdwIyXuckCUhpRSlGgVS/VoFkdAoZXEUTL4e3V9lChoBmgJaA9DCP6bFyc+AXFAlIaUUpRoFU0RAWgWR0Chli42sJY1dX2UKGgGaAloD0MI7L5jeOwvcUCUhpRSlGgVS/JoFkdAoZZc7MgU13V9lChoBmgJaA9DCMDMd/ATf3JAlIaUUpRoFUvLaBZHQKGWfTtLL6l1fZQoaAZoCWgPQwjNc0S+i7dxQJSGlFKUaBVL0GgWR0ChlvBOxjaxdX2UKGgGaAloD0MIJ92WyIXWcECUhpRSlGgVS/BoFkdAoZbth5PdmHV9lChoBmgJaA9DCAsMWd1qFWZAlIaUUpRoFU3oA2gWR0ChlvmUOd5IdX2UKGgGaAloD0MIn3QiwZSbcUCUhpRSlGgVS/doFkdAoZb8Xk5p8HV9lChoBmgJaA9DCP8fJ0yYNnFAlIaUUpRoFUvSaBZHQKGXPpUPxx11fZQoaAZoCWgPQwiMutbe545wQJSGlFKUaBVLy2gWR0Chlz/ZM+NcdX2UKGgGaAloD0MIvqPGhNgsckCUhpRSlGgVS9NoFkdAoZe0O/cnE3V9lChoBmgJaA9DCKq53GCoeFBAlIaUUpRoFUuQaBZHQKGXySt/4It1fZQoaAZoCWgPQwgcJ4V5z+FwQJSGlFKUaBVLvWgWR0ChmGCX6ZYxdX2UKGgGaAloD0MIJQaBlQOMcUCUhpRSlGgVS85oFkdAoZiHnOjZc3V9lChoBmgJaA9DCF5nQ/7ZlXFAlIaUUpRoFUviaBZHQKGY2dtEXtV1fZQoaAZoCWgPQwgPYfw0LlFxQJSGlFKUaBVL8mgWR0ChmPmb9ZRsdX2UKGgGaAloD0MIhslUwaiAb0CUhpRSlGgVS+hoFkdAoZmkLWqcVnV9lChoBmgJaA9DCA5qv7WTunNAlIaUUpRoFUv0aBZHQKGaEKlYU351fZQoaAZoCWgPQwjTZpyG6MpxQJSGlFKUaBVL3GgWR0ChmkffoA4odX2UKGgGaAloD0MI7SjOUYdFc0CUhpRSlGgVS9loFkdAoZpCYCyQgnV9lChoBmgJaA9DCN3sD5SbW3JAlIaUUpRoFUvjaBZHQKGaaNOM2m51fZQoaAZoCWgPQwg0EqERrHxyQJSGlFKUaBVNAAFoFkdAoZpzjaPCEnV9lChoBmgJaA9DCECGjh1UyXFAlIaUUpRoFUvRaBZHQKGafiAlOXV1fZQoaAZoCWgPQwghAg6hiodzQJSGlFKUaBVL2mgWR0ChmqqG+K0ldX2UKGgGaAloD0MId4L91zmGb0CUhpRSlGgVTQcBaBZHQKGbB/FzdUN1fZQoaAZoCWgPQwhsrwW9txBxQJSGlFKUaBVL3mgWR0Chm2X8n/kvdX2UKGgGaAloD0MIu5unOuT9VECUhpRSlGgVS65oFkdAoZvlKNAC4nV9lChoBmgJaA9DCBrCMcvegXFAlIaUUpRoFUv8aBZHQKGb9M495hV1fZQoaAZoCWgPQwihvI+jOT4zQJSGlFKUaBVLW2gWR0ChnBbzkIX1dX2UKGgGaAloD0MIZhU2A5y6cUCUhpRSlGgVS/BoFkdAoZx7FuNxVHV9lChoBmgJaA9DCEQ0uoNYNXBAlIaUUpRoFUv1aBZHQKGccxHoX9B1fZQoaAZoCWgPQwgrUIvBwwlxQJSGlFKUaBVL2GgWR0ChnHdZq20BdX2UKGgGaAloD0MIkdPX8zXgckCUhpRSlGgVTb4DaBZHQKGc6a/ATIx1fZQoaAZoCWgPQwg4hCo1++JxQJSGlFKUaBVLzWgWR0ChnV6ClJpWdX2UKGgGaAloD0MI6dFUTyb+cUCUhpRSlGgVS89oFkdAoZ2RTGYKIHV9lChoBmgJaA9DCDJzgctjlnJAlIaUUpRoFUvXaBZHQKGds4tpVS51fZQoaAZoCWgPQwgS+S6lLhdyQJSGlFKUaBVL4GgWR0ChneyeAd4ndX2UKGgGaAloD0MIwVjfwOSib0CUhpRSlGgVS+hoFkdAoairM5fdAXV9lChoBmgJaA9DCLh1N0/1z3BAlIaUUpRoFUvfaBZHQKGpF2X9itt1fZQoaAZoCWgPQwhfX+tSY1pyQJSGlFKUaBVL1WgWR0ChqThbW3BpdX2UKGgGaAloD0MIAmISLiRGckCUhpRSlGgVS8hoFkdAoamTm0VrRHV9lChoBmgJaA9DCP5GO25473JAlIaUUpRoFUvYaBZHQKGqBClabF11fZQoaAZoCWgPQwiDaK1oczJzQJSGlFKUaBVL5WgWR0Chqhiqp97XdX2UKGgGaAloD0MIn+V5cHdsckCUhpRSlGgVS9FoFkdAoao3U6PsA3V9lChoBmgJaA9DCAKetHCZP3NAlIaUUpRoFUvgaBZHQKGqgk6cRUZ1fZQoaAZoCWgPQwhkyRzLOxNyQJSGlFKUaBVL4WgWR0Chqn2NWEK3dX2UKGgGaAloD0MIPrSPFbzwcECUhpRSlGgVS8hoFkdAoaqqCL/CInV9lChoBmgJaA9DCDuPiv+7FnNAlIaUUpRoFU1lAWgWR0Chqq8W0qpcdX2UKGgGaAloD0MIKCfaVYjbckCUhpRSlGgVS8poFkdAoatYJ9iMHnV9lChoBmgJaA9DCFFoWffPpnFAlIaUUpRoFUvnaBZHQKGrc7r9l3B1fZQoaAZoCWgPQwhqozodSFdyQJSGlFKUaBVL3mgWR0Chq4eee4CqdX2UKGgGaAloD0MIA137Avryb0CUhpRSlGgVS+RoFkdAoawRxtHhCXV9lChoBmgJaA9DCJV9VwS/M3NAlIaUUpRoFUvtaBZHQKGsDYKYzBR1fZQoaAZoCWgPQwhtqu6RzUFyQJSGlFKUaBVL02gWR0ChrDOhsZYQdX2UKGgGaAloD0MI6bXZWMkXckCUhpRSlGgVS85oFkdAoaw94iX6ZnV9lChoBmgJaA9DCItR19r79W5AlIaUUpRoFUvaaBZHQKGsscoYvWZ1fZQoaAZoCWgPQwgCSkONwqxuQJSGlFKUaBVL1mgWR0ChrS8QRPGidX2UKGgGaAloD0MI409UNiw6c0CUhpRSlGgVS91oFkdAoa12mvW6LHV9lChoBmgJaA9DCGLYYUz6x3JAlIaUUpRoFUvZaBZHQKGtoCNCJGh1fZQoaAZoCWgPQwhGXAAa5eNwQJSGlFKUaBVL32gWR0ChrbsRg7YDdX2UKGgGaAloD0MI4zWv6qymcUCUhpRSlGgVTQ4BaBZHQKGuCFotcwB1fZQoaAZoCWgPQwgTRx6IrMJuQJSGlFKUaBVL9GgWR0ChrkkK/mDEdX2UKGgGaAloD0MIX0NwXEZScECUhpRSlGgVS9hoFkdAoa6Yn4O+ZnV9lChoBmgJaA9DCIdPOpHgNHBAlIaUUpRoFUvSaBZHQKGuss7uDz11fZQoaAZoCWgPQwgyyF2E6fJwQJSGlFKUaBVL2GgWR0ChrrUo8ZDRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 456, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-53-generic-x86_64-with-glibc2.35 #59-Ubuntu SMP Mon Oct 17 18:53:30 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5b33449097e82a201d2b6f8acdf1aa013fd365a212c3bfc4d14abedc5be4ed1
|
3 |
+
size 147350
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd166daa170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd166daa200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd166daa290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd166daa320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd166daa3b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd166daa440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd166daa4d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd166daa560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd166daa5f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd166daa680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd166daa710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd166d9fd00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"bounded_below": "[ True True True True True True True True]",
|
28 |
+
"bounded_above": "[ True True True True True True True True]",
|
29 |
+
"_shape": [
|
30 |
+
8
|
31 |
+
],
|
32 |
+
"low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
33 |
+
"high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
34 |
+
"low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
35 |
+
"high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
36 |
+
"_np_random": null
|
37 |
+
},
|
38 |
+
"action_space": {
|
39 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
40 |
+
":serialized:": "gAWVOwEAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGgbihCIAOg4TJu6SMEsEgiNaJpwjANpbmOUihGJpUa6GjRyx3BJuCCfMIHgAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
41 |
+
"n": 4,
|
42 |
+
"start": 0,
|
43 |
+
"_shape": [],
|
44 |
+
"dtype": "int64",
|
45 |
+
"_np_random": "Generator(PCG64)"
|
46 |
+
},
|
47 |
+
"n_envs": 16,
|
48 |
+
"num_timesteps": 1874400,
|
49 |
+
"_total_timesteps": 2097152,
|
50 |
+
"_num_timesteps_at_start": 0,
|
51 |
+
"seed": 497534116,
|
52 |
+
"action_noise": null,
|
53 |
+
"start_time": 1670777594426917397,
|
54 |
+
"learning_rate": 0.0003,
|
55 |
+
"tensorboard_log": null,
|
56 |
+
"lr_schedule": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
59 |
+
},
|
60 |
+
"_last_obs": {
|
61 |
+
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNS/bwprS898Ao9Ps25IL65HHs9PA4WPQAAAAAAAAAAjUkMvlrHnD8OWpC+NOowvyY6gb4u6B+9AAAAAAAAAAAzRlC9HMNVvOouXj01nXY809vDvdeuSj0AAIA/AACAP1pnJz5/THo/XtvDvfaG/r6JJrk+VVmavgAAAAAAAAAAZn6uu/Nkuz/u3re9C1WnPv2oxjsIsqQ8AAAAAAAAAABmhFU9xqXHPrBYdL5N6Oe+yqK9vZXHAL4AAAAAAAAAAADcnDt26rg/plTGPfaofD6oTbK7aq2xvAAAAAAAAAAAM336PXFNX7lKoeK7BlLfuO52VbrGzBW6AAAAAAAAAAAAILS86EuWPfod6DzkHa2+HOdMvd168rwAAAAAAAAAADP1qLz3VQ4+nWngPGNBqL4pUMS980rTPQAAAAAAAAAARiQxvpjBsD4SYQQ+npDOvly8vL0b1W09AAAAAAAAAABmmKs8wFGvP9rZHz7AQJm+gFZgPC6RvD0AAAAAAAAAAADA1DopJCO6pyW7s6IdF6zOgiM7Fj3JMwAAgD8AAIA/gKCUPdYSUj8drBe+30DMvvSIjz3oxFG+AAAAAAAAAACmRJW++8U6P1HOKb28Bxq/ElinvkQ3GD4AAAAAAAAAAMD7yz0oXKc/ETGCPva6s77Pd0U+JtZnPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
63 |
+
},
|
64 |
+
"_last_episode_starts": {
|
65 |
+
":type:": "<class 'numpy.ndarray'>",
|
66 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
67 |
+
},
|
68 |
+
"_last_original_obs": null,
|
69 |
+
"_episode_num": 0,
|
70 |
+
"use_sde": false,
|
71 |
+
"sde_sample_freq": -1,
|
72 |
+
"_current_progress_remaining": 0.109375,
|
73 |
+
"ep_info_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZJC7CBMccUCUhpRSlIwBbJRL04wBdJRHQKGBp3Dej211fZQoaAZoCWgPQwi2SrA4nNkLwJSGlFKUaBVLaWgWR0ChjYzxG2CvdX2UKGgGaAloD0MIPNwODQtLckCUhpRSlGgVS+loFkdAoY3sewLVnXV9lChoBmgJaA9DCEH1DyIZmHJAlIaUUpRoFUvTaBZHQKGOatoSL611fZQoaAZoCWgPQwhmMhzPJyJyQJSGlFKUaBVL82gWR0Chjne/Ho5hdX2UKGgGaAloD0MI1eqrq4I0ZkCUhpRSlGgVTbICaBZHQKGOufq5byJ1fZQoaAZoCWgPQwjgumJGeO9uQJSGlFKUaBVLy2gWR0ChjrlKTSssdX2UKGgGaAloD0MIavrsgOvycECUhpRSlGgVS+1oFkdAoY7xd0JWvXV9lChoBmgJaA9DCBbD1QEQTXFAlIaUUpRoFUvuaBZHQKGPDf4yoGZ1fZQoaAZoCWgPQwifc7frpS1xQJSGlFKUaBVL6WgWR0Chjylkxyn2dX2UKGgGaAloD0MI/oFy2/55ckCUhpRSlGgVTdoBaBZHQKGPh0NjLB91fZQoaAZoCWgPQwgvNUI/EzhxQJSGlFKUaBVL1mgWR0Chj/A8r7O3dX2UKGgGaAloD0MI8z0jEZqob0CUhpRSlGgVS+xoFkdAoZBC9PDYRXV9lChoBmgJaA9DCDbJj/hVPXJAlIaUUpRoFUvVaBZHQKGQggNgBtF1fZQoaAZoCWgPQwiEhChfkH9yQJSGlFKUaBVNCQFoFkdAoZCPa11GLHV9lChoBmgJaA9DCL3kf/K3VnFAlIaUUpRoFUvnaBZHQKGQ69ic5Kh1fZQoaAZoCWgPQwhfYizTL3dQQJSGlFKUaBVLkGgWR0ChkTJF1B+ndX2UKGgGaAloD0MIPbmmQGavKsCUhpRSlGgVS31oFkdAoZGmRA8jiXV9lChoBmgJaA9DCBssnKQ5xnJAlIaUUpRoFUvDaBZHQKGRx3ai9Ix1fZQoaAZoCWgPQwi4sdmRaoFwQJSGlFKUaBVL5GgWR0Chkc6qCHymdX2UKGgGaAloD0MIgEi/fZ3cckCUhpRSlGgVS99oFkdAoZIizXz19XV9lChoBmgJaA9DCFxUi4giYnBAlIaUUpRoFUvLaBZHQKGSXGbTc7B1fZQoaAZoCWgPQwhORpVh3EpXQJSGlFKUaBVLs2gWR0Chks3j+717dX2UKGgGaAloD0MIZJKRs3CRcUCUhpRSlGgVTQIBaBZHQKGS1gfEGaB1fZQoaAZoCWgPQwhTl4xj5ExzQJSGlFKUaBVL6GgWR0ChkvB99c8ldX2UKGgGaAloD0MIjKNyEzWDckCUhpRSlGgVTQIBaBZHQKGTJxZuAI91fZQoaAZoCWgPQwgYIxKFFt9zQJSGlFKUaBVLzWgWR0Chk6+KTB69dX2UKGgGaAloD0MIJnMs76qlR0CUhpRSlGgVS4xoFkdAoZQbuhK15XV9lChoBmgJaA9DCN2XM9vVKHJAlIaUUpRoFUvUaBZHQKGULu4wyqN1fZQoaAZoCWgPQwgwRiQKLatxQJSGlFKUaBVL02gWR0ChlDktuk1udX2UKGgGaAloD0MIniees8XzcECUhpRSlGgVS95oFkdAoZSb0SRKYnV9lChoBmgJaA9DCGH9n8M8rHBAlIaUUpRoFU0FAWgWR0ChlWr2g398dX2UKGgGaAloD0MIeoocIi5pcUCUhpRSlGgVS8poFkdAoZWA84gieXV9lChoBmgJaA9DCGO1+X/VLFRAlIaUUpRoFUucaBZHQKGVir5IpYt1fZQoaAZoCWgPQwjFVtC0xHo5QJSGlFKUaBVLZGgWR0ChlaOFpPAPdX2UKGgGaAloD0MIkUdwIyXuckCUhpRSlGgVS/VoFkdAoZXEUTL4e3V9lChoBmgJaA9DCP6bFyc+AXFAlIaUUpRoFU0RAWgWR0Chli42sJY1dX2UKGgGaAloD0MI7L5jeOwvcUCUhpRSlGgVS/JoFkdAoZZc7MgU13V9lChoBmgJaA9DCMDMd/ATf3JAlIaUUpRoFUvLaBZHQKGWfTtLL6l1fZQoaAZoCWgPQwjNc0S+i7dxQJSGlFKUaBVL0GgWR0ChlvBOxjaxdX2UKGgGaAloD0MIJ92WyIXWcECUhpRSlGgVS/BoFkdAoZbth5PdmHV9lChoBmgJaA9DCAsMWd1qFWZAlIaUUpRoFU3oA2gWR0ChlvmUOd5IdX2UKGgGaAloD0MIn3QiwZSbcUCUhpRSlGgVS/doFkdAoZb8Xk5p8HV9lChoBmgJaA9DCP8fJ0yYNnFAlIaUUpRoFUvSaBZHQKGXPpUPxx11fZQoaAZoCWgPQwiMutbe545wQJSGlFKUaBVLy2gWR0Chlz/ZM+NcdX2UKGgGaAloD0MIvqPGhNgsckCUhpRSlGgVS9NoFkdAoZe0O/cnE3V9lChoBmgJaA9DCKq53GCoeFBAlIaUUpRoFUuQaBZHQKGXySt/4It1fZQoaAZoCWgPQwgcJ4V5z+FwQJSGlFKUaBVLvWgWR0ChmGCX6ZYxdX2UKGgGaAloD0MIJQaBlQOMcUCUhpRSlGgVS85oFkdAoZiHnOjZc3V9lChoBmgJaA9DCF5nQ/7ZlXFAlIaUUpRoFUviaBZHQKGY2dtEXtV1fZQoaAZoCWgPQwgPYfw0LlFxQJSGlFKUaBVL8mgWR0ChmPmb9ZRsdX2UKGgGaAloD0MIhslUwaiAb0CUhpRSlGgVS+hoFkdAoZmkLWqcVnV9lChoBmgJaA9DCA5qv7WTunNAlIaUUpRoFUv0aBZHQKGaEKlYU351fZQoaAZoCWgPQwjTZpyG6MpxQJSGlFKUaBVL3GgWR0ChmkffoA4odX2UKGgGaAloD0MI7SjOUYdFc0CUhpRSlGgVS9loFkdAoZpCYCyQgnV9lChoBmgJaA9DCN3sD5SbW3JAlIaUUpRoFUvjaBZHQKGaaNOM2m51fZQoaAZoCWgPQwg0EqERrHxyQJSGlFKUaBVNAAFoFkdAoZpzjaPCEnV9lChoBmgJaA9DCECGjh1UyXFAlIaUUpRoFUvRaBZHQKGafiAlOXV1fZQoaAZoCWgPQwghAg6hiodzQJSGlFKUaBVL2mgWR0ChmqqG+K0ldX2UKGgGaAloD0MId4L91zmGb0CUhpRSlGgVTQcBaBZHQKGbB/FzdUN1fZQoaAZoCWgPQwhsrwW9txBxQJSGlFKUaBVL3mgWR0Chm2X8n/kvdX2UKGgGaAloD0MIu5unOuT9VECUhpRSlGgVS65oFkdAoZvlKNAC4nV9lChoBmgJaA9DCBrCMcvegXFAlIaUUpRoFUv8aBZHQKGb9M495hV1fZQoaAZoCWgPQwihvI+jOT4zQJSGlFKUaBVLW2gWR0ChnBbzkIX1dX2UKGgGaAloD0MIZhU2A5y6cUCUhpRSlGgVS/BoFkdAoZx7FuNxVHV9lChoBmgJaA9DCEQ0uoNYNXBAlIaUUpRoFUv1aBZHQKGccxHoX9B1fZQoaAZoCWgPQwgrUIvBwwlxQJSGlFKUaBVL2GgWR0ChnHdZq20BdX2UKGgGaAloD0MIkdPX8zXgckCUhpRSlGgVTb4DaBZHQKGc6a/ATIx1fZQoaAZoCWgPQwg4hCo1++JxQJSGlFKUaBVLzWgWR0ChnV6ClJpWdX2UKGgGaAloD0MI6dFUTyb+cUCUhpRSlGgVS89oFkdAoZ2RTGYKIHV9lChoBmgJaA9DCDJzgctjlnJAlIaUUpRoFUvXaBZHQKGds4tpVS51fZQoaAZoCWgPQwgS+S6lLhdyQJSGlFKUaBVL4GgWR0ChneyeAd4ndX2UKGgGaAloD0MIwVjfwOSib0CUhpRSlGgVS+hoFkdAoairM5fdAXV9lChoBmgJaA9DCLh1N0/1z3BAlIaUUpRoFUvfaBZHQKGpF2X9itt1fZQoaAZoCWgPQwhfX+tSY1pyQJSGlFKUaBVL1WgWR0ChqThbW3BpdX2UKGgGaAloD0MIAmISLiRGckCUhpRSlGgVS8hoFkdAoamTm0VrRHV9lChoBmgJaA9DCP5GO25473JAlIaUUpRoFUvYaBZHQKGqBClabF11fZQoaAZoCWgPQwiDaK1oczJzQJSGlFKUaBVL5WgWR0Chqhiqp97XdX2UKGgGaAloD0MIn+V5cHdsckCUhpRSlGgVS9FoFkdAoao3U6PsA3V9lChoBmgJaA9DCAKetHCZP3NAlIaUUpRoFUvgaBZHQKGqgk6cRUZ1fZQoaAZoCWgPQwhkyRzLOxNyQJSGlFKUaBVL4WgWR0Chqn2NWEK3dX2UKGgGaAloD0MIPrSPFbzwcECUhpRSlGgVS8hoFkdAoaqqCL/CInV9lChoBmgJaA9DCDuPiv+7FnNAlIaUUpRoFU1lAWgWR0Chqq8W0qpcdX2UKGgGaAloD0MIKCfaVYjbckCUhpRSlGgVS8poFkdAoatYJ9iMHnV9lChoBmgJaA9DCFFoWffPpnFAlIaUUpRoFUvnaBZHQKGrc7r9l3B1fZQoaAZoCWgPQwhqozodSFdyQJSGlFKUaBVL3mgWR0Chq4eee4CqdX2UKGgGaAloD0MIA137Avryb0CUhpRSlGgVS+RoFkdAoawRxtHhCXV9lChoBmgJaA9DCJV9VwS/M3NAlIaUUpRoFUvtaBZHQKGsDYKYzBR1fZQoaAZoCWgPQwhtqu6RzUFyQJSGlFKUaBVL02gWR0ChrDOhsZYQdX2UKGgGaAloD0MI6bXZWMkXckCUhpRSlGgVS85oFkdAoaw94iX6ZnV9lChoBmgJaA9DCItR19r79W5AlIaUUpRoFUvaaBZHQKGsscoYvWZ1fZQoaAZoCWgPQwgCSkONwqxuQJSGlFKUaBVL1mgWR0ChrS8QRPGidX2UKGgGaAloD0MI409UNiw6c0CUhpRSlGgVS91oFkdAoa12mvW6LHV9lChoBmgJaA9DCGLYYUz6x3JAlIaUUpRoFUvZaBZHQKGtoCNCJGh1fZQoaAZoCWgPQwhGXAAa5eNwQJSGlFKUaBVL32gWR0ChrbsRg7YDdX2UKGgGaAloD0MI4zWv6qymcUCUhpRSlGgVTQ4BaBZHQKGuCFotcwB1fZQoaAZoCWgPQwgTRx6IrMJuQJSGlFKUaBVL9GgWR0ChrkkK/mDEdX2UKGgGaAloD0MIX0NwXEZScECUhpRSlGgVS9hoFkdAoa6Yn4O+ZnV9lChoBmgJaA9DCIdPOpHgNHBAlIaUUpRoFUvSaBZHQKGuss7uDz11fZQoaAZoCWgPQwgyyF2E6fJwQJSGlFKUaBVL2GgWR0ChrrUo8ZDRdWUu"
|
76 |
+
},
|
77 |
+
"ep_success_buffer": {
|
78 |
+
":type:": "<class 'collections.deque'>",
|
79 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
80 |
+
},
|
81 |
+
"_n_updates": 456,
|
82 |
+
"n_steps": 1024,
|
83 |
+
"gamma": 0.999,
|
84 |
+
"gae_lambda": 0.98,
|
85 |
+
"ent_coef": 0.01,
|
86 |
+
"vf_coef": 0.5,
|
87 |
+
"max_grad_norm": 0.5,
|
88 |
+
"batch_size": 64,
|
89 |
+
"n_epochs": 4,
|
90 |
+
"clip_range": {
|
91 |
+
":type:": "<class 'function'>",
|
92 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
93 |
+
},
|
94 |
+
"clip_range_vf": null,
|
95 |
+
"normalize_advantage": true,
|
96 |
+
"target_kl": null
|
97 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95cac181dfb3d03dd0a5d3be2f360bfdc0e37d33a0f97d844ded49c85d6c6aeb
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44620882fb78222b477694afb4878ad980233eba153a75ef51ac5887e995ce
|
3 |
+
size 43073
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.0-53-generic-x86_64-with-glibc2.35 #59-Ubuntu SMP Mon Oct 17 18:53:30 UTC 2022
|
2 |
+
Python: 3.10.6
|
3 |
+
Stable-Baselines3: 2.0.0a0
|
4 |
+
PyTorch: 1.13.0+cu117
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.26.2
|
replay.mp4
ADDED
Binary file (182 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 293.6172755032601, "std_reward": 11.915341875954313, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-11T21:28:30.110603"}
|