Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 306.70 +/- 10.46
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4323ab130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4323ab1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4323ab250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4323ab2e0>", "_build": "<function ActorCriticPolicy._build at 0x7fb4323ab370>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4323ab400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4323ab490>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4323ab520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4323ab5b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4323ab640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4323ab6d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb432982ec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVOwEAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGgbihHaALkcHqwN/7MyygN0/M7BAIwDaW5jlIoQewyXM/UAmYnlD/XXQDevSnWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "n": 4, "start": 0, "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "num_timesteps": 5123360, "_total_timesteps": 8388608, "_num_timesteps_at_start": 0, "seed": 3818462135, "action_noise": null, "start_time": 1670860507691764250, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbC3bx5vsk+a8nRvJsQ4L5Z/kK9bVSRuwAAAAAAAAAAZhwoPTnagT/ojr89xk0yvzSzoz2tORO9AAAAAAAAAADmECO9XNllvCYd/r1pVFa+0ZWjPSv+4T4AAIA/AACAPzNuGT2h3ic+nwzGvo7VIL6vgXa+8GnbPAAAAAAAAAAAzQuYvODGQT9Giqk9y/MHvwbTzr24aM09AAAAAAAAAACTQgy+wzJ0P/JhZb7kYh2/8KCkvrrVCL4AAAAAAAAAAM2aTT2kFz+7C7P+PJpxAD2Zk3+8OtLVPQAAgD8AAIA/CsJ3vgMAoT8yNgy/xQg2vzGjt77aVYC+AAAAAAAAAAAAKBY7Unyau1uscbkVG5Y8CGHzPHIuf70AAIA/AACAP5qp8ztcO3C6oAZnN6TbTTJUPq46gTKHtgAAgD8AAIA/zf4yPA9IUD1Sh56+E5XuvfYOob55cSA7AAAAAAAAAAAAmr48nQKzPlhB8r2/97a+hU6xvEFyQzsAAAAAAAAAAAAmCLzsV9G7U/HzPU5FnjwO3ze9fs6EPQAAgD8AAIA/msnbPBVlWD/oYhe9Re0Iv/tMrzsq+zO8AAAAAAAAAADNgJG89jwYulO/4rAJx/KuSE/quF2bSzIAAIA/AACAPzN7IztdirI/iP/3Pfp4vb6WYaG6SIKhOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.390625, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs5YC0v7uckCUhpRSlIwBbJRL4YwBdJRHQK7AumUGFBZ1fZQoaAZoCWgPQwgBpDZxsntyQJSGlFKUaBVLsGgWR0CuwobxusLfdX2UKGgGaAloD0MIGvz9YrbecUCUhpRSlGgVS8loFkdArsK3kBCD3HV9lChoBmgJaA9DCCJseHqlUXBAlIaUUpRoFUu4aBZHQK7DA+s5n151fZQoaAZoCWgPQwiLwi6KnhlvQJSGlFKUaBVL1WgWR0Cuww2iDdxidX2UKGgGaAloD0MIgpAsYEJmckCUhpRSlGgVS8ZoFkdArsM+T5ftyHV9lChoBmgJaA9DCJaVJqWgbU1AlIaUUpRoFUu3aBZHQK7Dm+yJKrd1fZQoaAZoCWgPQwjNdK+TepRzQJSGlFKUaBVL7GgWR0Cuw5Jr1uiwdX2UKGgGaAloD0MIRs1XyUeGcUCUhpRSlGgVS7loFkdArsPU6T4cm3V9lChoBmgJaA9DCKgY529CxHJAlIaUUpRoFU0bAWgWR0Cuw+g3974SdX2UKGgGaAloD0MIHH3MB0TgckCUhpRSlGgVS8JoFkdArsQkuDjBEnV9lChoBmgJaA9DCOxoHOp3fnBAlIaUUpRoFUvOaBZHQK7EQhh6Skl1fZQoaAZoCWgPQwgW9rTD39FwQJSGlFKUaBVL82gWR0CuxGrj5sTGdX2UKGgGaAloD0MIKVlOQikddECUhpRSlGgVS8RoFkdArsRsF+uvEHV9lChoBmgJaA9DCB1aZDvfLXFAlIaUUpRoFUvDaBZHQK7E0YnfEXN1fZQoaAZoCWgPQwhLyt3neBRxQJSGlFKUaBVL82gWR0CuxWzzd1uBdX2UKGgGaAloD0MIr3d/vBfpcUCUhpRSlGgVS+toFkdArsWQ4ACGOHV9lChoBmgJaA9DCMfw2M9il3FAlIaUUpRoFUvUaBZHQK7GSNc4YJp1fZQoaAZoCWgPQwg3bjE/929yQJSGlFKUaBVLwWgWR0CuxlUZNwirdX2UKGgGaAloD0MIUHEceDUGcUCUhpRSlGgVS9FoFkdArsZK+tbLU3V9lChoBmgJaA9DCA2Oklcne3FAlIaUUpRoFUvnaBZHQK7GjFCswL51fZQoaAZoCWgPQwjqB3WRQjdIQJSGlFKUaBVLtWgWR0CuxqOnuRcNdX2UKGgGaAloD0MIvfvjvWp1ckCUhpRSlGgVS9JoFkdArsamvQnhKnV9lChoBmgJaA9DCDIepRIeWnFAlIaUUpRoFUvdaBZHQK7GyPPszEd1fZQoaAZoCWgPQwgknBa8KExxQJSGlFKUaBVL2mgWR0CuxvBcqvvCdX2UKGgGaAloD0MI+FROe4ouckCUhpRSlGgVS85oFkdArsbvmPo3aXV9lChoBmgJaA9DCOMYyR6htHJAlIaUUpRoFU0jAWgWR0CuxwG8/UvxdX2UKGgGaAloD0MI5sk1BbJgckCUhpRSlGgVTQ0BaBZHQK7HEt4iX6Z1fZQoaAZoCWgPQwj8prBSwdlxQJSGlFKUaBVNAQFoFkdArscei+L3sXV9lChoBmgJaA9DCMeePZepvG1AlIaUUpRoFUvWaBZHQK7HMyQgcLl1fZQoaAZoCWgPQwiN1HsqJ3FwQJSGlFKUaBVLxWgWR0Cux0C704BFdX2UKGgGaAloD0MIfVwbKka6cECUhpRSlGgVS/NoFkdArsdCxiXpn3V9lChoBmgJaA9DCJS+EHKeUnFAlIaUUpRoFUvYaBZHQK7HsS7GvOh1fZQoaAZoCWgPQwhG0QMfA3xxQJSGlFKUaBVLvWgWR0Cux//Ru0kXdX2UKGgGaAloD0MILe4/Mh2xVUCUhpRSlGgVS5toFkdArsgaW3Sa3XV9lChoBmgJaA9DCE0Ttp9M1HNAlIaUUpRoFUvVaBZHQK7IQs6q8151fZQoaAZoCWgPQwgtXFZh81hxQJSGlFKUaBVL5WgWR0CuyG1k+X7cdX2UKGgGaAloD0MIPDHrxdAQcUCUhpRSlGgVS9JoFkdArsh9IK+i8HV9lChoBmgJaA9DCFOvWwQGAXNAlIaUUpRoFUvpaBZHQK7IwAEMb3p1fZQoaAZoCWgPQwiug4O9iZByQJSGlFKUaBVLvWgWR0CuyPdpAUtadX2UKGgGaAloD0MIPulEgqm5b0CUhpRSlGgVS+NoFkdArskVGqgh83V9lChoBmgJaA9DCAdhbvfyeHBAlIaUUpRoFUuxaBZHQK7JK0WuX/p1fZQoaAZoCWgPQwigNqrTgT1wQJSGlFKUaBVLyGgWR0CuyWH/LkjpdX2UKGgGaAloD0MIh4cwfprKckCUhpRSlGgVS/loFkdArsmIBtDUmXV9lChoBmgJaA9DCB+F61E4CnBAlIaUUpRoFUvHaBZHQK7Jq76Hj6x1fZQoaAZoCWgPQwg/pyA/28xxQJSGlFKUaBVL82gWR0Cuyaj7655JdX2UKGgGaAloD0MIt5ifG9p4ckCUhpRSlGgVS/FoFkdArtd/lCCz1XV9lChoBmgJaA9DCAE0Spd+nHJAlIaUUpRoFU0HAWgWR0Cu14GCI1tPdX2UKGgGaAloD0MIveKpRxoIdECUhpRSlGgVTR0BaBZHQK7XllDneSB1fZQoaAZoCWgPQwifPgJ/uGtxQJSGlFKUaBVLw2gWR0Cu16+m3vx6dX2UKGgGaAloD0MI/+px32qib0CUhpRSlGgVS8JoFkdArtfHfO2RaHV9lChoBmgJaA9DCMucLotJfHFAlIaUUpRoFUu5aBZHQK7XzeokzGh1fZQoaAZoCWgPQwgdrWpJh5ZzQJSGlFKUaBVLzGgWR0Cu2BXvphWpdX2UKGgGaAloD0MI3NrC85IvcUCUhpRSlGgVS85oFkdArtgn8O09hnV9lChoBmgJaA9DCAZoW8163HNAlIaUUpRoFUuvaBZHQK7YM4S6DoR1fZQoaAZoCWgPQwhgcw6eCXhwQJSGlFKUaBVLwmgWR0Cu2FGmtQsPdX2UKGgGaAloD0MIie3uAbqTcECUhpRSlGgVS85oFkdArtiFvES/TXV9lChoBmgJaA9DCBE0ZhK1VnBAlIaUUpRoFUvJaBZHQK7YnEAHVwx1fZQoaAZoCWgPQwiEuHL2jmVwQJSGlFKUaBVL42gWR0Cu2K4D9wWFdX2UKGgGaAloD0MIm5Ksw1GFckCUhpRSlGgVS8VoFkdArtjbc45tFnV9lChoBmgJaA9DCDcZVYbxAXJAlIaUUpRoFUu3aBZHQK7Y4OXmeUZ1fZQoaAZoCWgPQwhpjxfSIQRwQJSGlFKUaBVL22gWR0Cu2PCbtqpMdX2UKGgGaAloD0MIPq4NFeM0JcCUhpRSlGgVS2loFkdArtkel/H5rXV9lChoBmgJaA9DCN4AM98B5nFAlIaUUpRoFUvuaBZHQK7ZN/I8yN51fZQoaAZoCWgPQwgRje4gdutxQJSGlFKUaBVL7GgWR0Cu2Vd3B55adX2UKGgGaAloD0MIoFIlyt62cUCUhpRSlGgVS+ZoFkdArtlqOmzjWHV9lChoBmgJaA9DCMtpT8n5gnJAlIaUUpRoFUuzaBZHQK7ZlCLuQZJ1fZQoaAZoCWgPQwieKXReI7FyQJSGlFKUaBVNDgFoFkdArtmdvAGjbnV9lChoBmgJaA9DCIP4wI6/j3FAlIaUUpRoFUv1aBZHQK7ZswTM7lt1fZQoaAZoCWgPQwi+TX/2I+1xQJSGlFKUaBVLyGgWR0Cu2bDesPrfdX2UKGgGaAloD0MIERjrGxh1ckCUhpRSlGgVS/poFkdArtnB4Oc2BXV9lChoBmgJaA9DCKqB5nPu5HFAlIaUUpRoFUvbaBZHQK7Z6veP7vZ1fZQoaAZoCWgPQwgLX1/rUqlxQJSGlFKUaBVL2mgWR0Cu2k1/MGHIdX2UKGgGaAloD0MIBfwaSYKuckCUhpRSlGgVS9doFkdArtpmotL+P3V9lChoBmgJaA9DCAjpKXJIs3NAlIaUUpRoFUu3aBZHQK7aaIa99MN1fZQoaAZoCWgPQwjM0eP3dppzQJSGlFKUaBVL+WgWR0Cu2pUPH1e0dX2UKGgGaAloD0MIpUkp6HadckCUhpRSlGgVS9hoFkdArtqSrtE5Q3V9lChoBmgJaA9DCDNv1XWo1XJAlIaUUpRoFUvgaBZHQK7anmwqy4Z1fZQoaAZoCWgPQwiaIsDpXVZxQJSGlFKUaBVLx2gWR0Cu2rLnkkrxdX2UKGgGaAloD0MIbHpQUIqwckCUhpRSlGgVS8RoFkdArtsBsEaESXV9lChoBmgJaA9DCKThlLn59XJAlIaUUpRoFUvjaBZHQK7bGp5NXYF1fZQoaAZoCWgPQwh/Ep87we9UQJSGlFKUaBVLuGgWR0Cu2yNL127ndX2UKGgGaAloD0MIyqmdYeoBcUCUhpRSlGgVS8BoFkdArttCpm29c3V9lChoBmgJaA9DCPS/XItWw3BAlIaUUpRoFUvkaBZHQK7bcAEt/Wl1fZQoaAZoCWgPQwjCFyZTBSBxQJSGlFKUaBVL/WgWR0Cu24QFcIJJdX2UKGgGaAloD0MIB9Fa0aZOcUCUhpRSlGgVS+loFkdArtubYkE9uHV9lChoBmgJaA9DCKGDLuGQlXJAlIaUUpRoFU0DAWgWR0Cu29IJAt4BdX2UKGgGaAloD0MIeqcC7rkQdECUhpRSlGgVS9poFkdArtvFtj0+T3V9lChoBmgJaA9DCNKrAUqDjHFAlIaUUpRoFUu5aBZHQK7cBBVuJk51fZQoaAZoCWgPQwi0A64rphBwQJSGlFKUaBVLxGgWR0Cu2/wob4rSdX2UKGgGaAloD0MIqkca3Fa7bUCUhpRSlGgVS8RoFkdArtwbhisnzHV9lChoBmgJaA9DCBQlIZG22HFAlIaUUpRoFUuyaBZHQK7cKh24d6t1fZQoaAZoCWgPQwgMsfojTFVxQJSGlFKUaBVLwmgWR0Cu3GKrR0EHdX2UKGgGaAloD0MIQPomTQPWcECUhpRSlGgVS8NoFkdArtxTCk43m3V9lChoBmgJaA9DCOIgIcpXaXBAlIaUUpRoFUu+aBZHQK7cokfs/pt1fZQoaAZoCWgPQwj+fjFbshtyQJSGlFKUaBVLyWgWR0Cu3P2mP5pKdX2UKGgGaAloD0MI6PaSxigyc0CUhpRSlGgVS+hoFkdArt0HO6d1+3V9lChoBmgJaA9DCAH76NTVJXNAlIaUUpRoFUvlaBZHQK7dHF8XvYx1fZQoaAZoCWgPQwhYOEnzhwRyQJSGlFKUaBVNGAFoFkdArt0bJ6po9XV9lChoBmgJaA9DCHNjesKSwnBAlIaUUpRoFUvJaBZHQK7dSLn9vTB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-53-generic-x86_64-with-glibc2.35 #59-Ubuntu SMP Mon Oct 17 18:53:30 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.26.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb687327be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb687327c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb687327d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb687327d90>", "_build": "<function ActorCriticPolicy._build at 0x7fb687327e20>", "forward": "<function ActorCriticPolicy.forward at 0x7fb687327eb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb687327f40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb687338040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6873380d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb687338160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6873381f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb6873315c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVOwEAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGgbihAf7q0H+X49imGQTXTUsSIijANpbmOUihGtoV3MKuUd66Z4+6ysS1WTAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "n": 4, "start": 0, "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "num_timesteps": 4473568, "_total_timesteps": 8000000, "_num_timesteps_at_start": 0, "seed": 2684053579, "action_noise": null, "start_time": 1670963809691872880, "learning_rate": 0.0003, "tensorboard_log": "tensorboard-logs/ppo-LunarLander-v2/LunarLander-v2", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACf6TxIZYK6UtR8vGjdADni5AS7IKppuAAAgD8AAIA/QITPvaqcGz9CtCI9Oq4Ev8emeb7NGfI9AAAAAAAAAADNVMU87MGUuyUSAL6X54E9p575PINLMbwAAIA/AACAP7NhPz04BK893anqvfqduL6fDUE9WvKBPAAAAAAAAAAAmhv0PZc6Sj8WWjY+gr4ov442fD6UAqa7AAAAAAAAAACGhhA+KXMvPsK+xL4BQri+ipM9vubt3L0AAAAAAAAAAPMCMD5UOoq89sooue7s8jfcJvG9zEyUOAAAgD8AAAAAzVYSvRTajbre0wa4ma8Os+yPMLvuXxw3AACAPwAAgD9m5pA7FFaKuoqo6jw/Tc4yhlIJu386njEAAIA/AACAPzMxDLyE4OE+GQ62OydqAb85suC8C67fPAAAAAAAAAAAAFQ4PLnVND9pZJu8IXYFv70vJ705pJq9AAAAAAAAAAAzhWe9Fra2PzU+j779GE6+DhntvXJaK74AAAAAAAAAAGYcq7zSU/27uo17O1c5lDxMGFe9Ntp3PQAAgD8AAIA/ZjB5POQUsj+Ik3g+4mBZvoEIjDurXF89AAAAAAAAAADmljc9lBawvMsJQz4LzAQ98QkKvU71NzwAAIA/AACAP5pDPzw2rw686kW4vP19bDx0EHk9yONGvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.44089599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFJUNa6rqc0CUhpRSlIwBbJRLzYwBdJRHQLAyrbiIcip1fZQoaAZoCWgPQwiBeF2/YFdwQJSGlFKUaBVLtGgWR0CwMtEZzgdfdX2UKGgGaAloD0MIrtf0oKABckCUhpRSlGgVS7xoFkdAsDLomw7kn3V9lChoBmgJaA9DCMqkhjaAOnJAlIaUUpRoFUu4aBZHQLAzAuLaVUx1fZQoaAZoCWgPQwhBZfz7DApzQJSGlFKUaBVLz2gWR0CwMwP60pmVdX2UKGgGaAloD0MImyDqPgBbcUCUhpRSlGgVS79oFkdAsDMT6dlNDnV9lChoBmgJaA9DCJZ4QNkUYXBAlIaUUpRoFUvLaBZHQLAzECUX5311fZQoaAZoCWgPQwgNNJ9z9yJyQJSGlFKUaBVLqWgWR0CwMxPx6OYIdX2UKGgGaAloD0MIdGIP7WM7b0CUhpRSlGgVS7doFkdAsDMvyMDOknV9lChoBmgJaA9DCEypS8Yx/nBAlIaUUpRoFUvPaBZHQLAzLx7zCk51fZQoaAZoCWgPQwjGhm72h0hxQJSGlFKUaBVL1WgWR0CwMzA2qDK6dX2UKGgGaAloD0MI4stEEVLpcECUhpRSlGgVS9RoFkdAsDNLjJdSl3V9lChoBmgJaA9DCEaWzLE8u25AlIaUUpRoFUvHaBZHQLAzXn/T9bZ1fZQoaAZoCWgPQwiuZp3xPThxQJSGlFKUaBVLwWgWR0CwM2I55qubdX2UKGgGaAloD0MIePF+3P78cUCUhpRSlGgVS9BoFkdAsDNjkOqeb3V9lChoBmgJaA9DCCuGqwMgGnBAlIaUUpRoFUvFaBZHQLAzYpjtoi91fZQoaAZoCWgPQwiNf59x4eJxQJSGlFKUaBVLyGgWR0CwM3X27FsIdX2UKGgGaAloD0MILZPheD5ScECUhpRSlGgVS8hoFkdAsDrqyRjjJnV9lChoBmgJaA9DCFFNSdbh43JAlIaUUpRoFUu1aBZHQLA6+Zv1lGx1fZQoaAZoCWgPQwhTBg5oqXJyQJSGlFKUaBVLv2gWR0CwO1Xr+o9+dX2UKGgGaAloD0MIoBuaslNkb0CUhpRSlGgVS8toFkdAsDtgTi83/HV9lChoBmgJaA9DCKcIcHoXDW9AlIaUUpRoFUvKaBZHQLA7benhsIp1fZQoaAZoCWgPQwiiKNAnsixyQJSGlFKUaBVLt2gWR0CwO3yiudPMdX2UKGgGaAloD0MIYi0+BcBrc0CUhpRSlGgVS9VoFkdAsDuAb70nPXV9lChoBmgJaA9DCIxmZftQh3JAlIaUUpRoFUvcaBZHQLA7hpJwsGx1fZQoaAZoCWgPQwiDT3Py4u5yQJSGlFKUaBVL1GgWR0CwO5rx3FDOdX2UKGgGaAloD0MIkBZnDLMIcUCUhpRSlGgVS9hoFkdAsDuhnJ1aGHV9lChoBmgJaA9DCFyrPezFa3FAlIaUUpRoFUu8aBZHQLA7thAnlXB1fZQoaAZoCWgPQwhJDtjVpIByQJSGlFKUaBVLuGgWR0CwO7c+A3DOdX2UKGgGaAloD0MIaw97oQDbc0CUhpRSlGgVS9VoFkdAsDu9upCKJnV9lChoBmgJaA9DCDiB6bTuKXBAlIaUUpRoFUvGaBZHQLA7ydXT3Ix1fZQoaAZoCWgPQwhIT5FDBINxQJSGlFKUaBVLzGgWR0CwO9IUWVNYdX2UKGgGaAloD0MI43FRLWKxckCUhpRSlGgVS8BoFkdAsDvXnoxHoXV9lChoBmgJaA9DCPZDbLBwunJAlIaUUpRoFUu5aBZHQLA8CfD1oQF1fZQoaAZoCWgPQwi9qrNaYOByQJSGlFKUaBVLvWgWR0CwPBH9rGipdX2UKGgGaAloD0MIkbbxJ2qcckCUhpRSlGgVS8toFkdAsDxHWFvhqHV9lChoBmgJaA9DCJnWprG9InNAlIaUUpRoFUvLaBZHQLA8Umz0HyF1fZQoaAZoCWgPQwgGuYswhWNwQJSGlFKUaBVLx2gWR0CwPFrlvIfbdX2UKGgGaAloD0MIwqIiTif6cECUhpRSlGgVS79oFkdAsDxiX2M85nV9lChoBmgJaA9DCHOiXYXUonJAlIaUUpRoFUvGaBZHQLA8aCrLhaV1fZQoaAZoCWgPQwj4jERohENyQJSGlFKUaBVLvWgWR0CwPGhV+7UYdX2UKGgGaAloD0MIbjSAt4CxcUCUhpRSlGgVS7FoFkdAsDxwhTwUg3V9lChoBmgJaA9DCAxWnGptoXJAlIaUUpRoFUu5aBZHQLA8l5iExqR1fZQoaAZoCWgPQwg7pu7KrrlyQJSGlFKUaBVL0GgWR0CwPJrtmcvvdX2UKGgGaAloD0MInUfF/91JcECUhpRSlGgVS75oFkdAsDyj4TK1X3V9lChoBmgJaA9DCNnMIakF3m9AlIaUUpRoFUvNaBZHQLA8r/MW43F1fZQoaAZoCWgPQwjxuRPs/1BzQJSGlFKUaBVLv2gWR0CwPLnZGrjpdX2UKGgGaAloD0MIyCjPvNxTcUCUhpRSlGgVS8RoFkdAsDzHE4vN/3V9lChoBmgJaA9DCM3K9iFvYW5AlIaUUpRoFUvOaBZHQLA8xHGS6lN1fZQoaAZoCWgPQwgTfxR15ltuQJSGlFKUaBVLzGgWR0CwPPBYFJQMdX2UKGgGaAloD0MIc71tpoKTckCUhpRSlGgVS+VoFkdAsD0bk7wKB3V9lChoBmgJaA9DCIHoSZmURnJAlIaUUpRoFUvAaBZHQLA9MbvgFX91fZQoaAZoCWgPQwgjS+ZY3tZyQJSGlFKUaBVL1mgWR0CwPT0zj3mFdX2UKGgGaAloD0MIWKg1zXtTcECUhpRSlGgVS8NoFkdAsD1O24NI9XV9lChoBmgJaA9DCKZ7ndSXeXNAlIaUUpRoFUvNaBZHQLA9UX5WRzR1fZQoaAZoCWgPQwgRGVbxhmlyQJSGlFKUaBVL12gWR0CwPVfCMxXXdX2UKGgGaAloD0MInUgw1UzjcUCUhpRSlGgVS91oFkdAsD1krI5o5HV9lChoBmgJaA9DCIo6cw+Jg3NAlIaUUpRoFUvnaBZHQLA9ZAzHjp91fZQoaAZoCWgPQwgbnfNTHIdvQJSGlFKUaBVLz2gWR0CwPYy8vmHQdX2UKGgGaAloD0MIuYjvxOwYcUCUhpRSlGgVS89oFkdAsD2XpcHGCXV9lChoBmgJaA9DCIo8SbqmBnFAlIaUUpRoFUvgaBZHQLA9lEehf0F1fZQoaAZoCWgPQwhvKeeLfRNzQJSGlFKUaBVL32gWR0CwPZaagElmdX2UKGgGaAloD0MIiuPAqyUYcUCUhpRSlGgVS8xoFkdAsD2oKLKmsXV9lChoBmgJaA9DCFEVU+mnFG9AlIaUUpRoFUvUaBZHQLA9t1ZDArR1fZQoaAZoCWgPQwis/Z3tkehxQJSGlFKUaBVL52gWR0CwPb71VYITdX2UKGgGaAloD0MIPITx03jrcUCUhpRSlGgVS8NoFkdAsD3SEZiuuHV9lChoBmgJaA9DCP62J0hsiFJAlIaUUpRoFUt9aBZHQLA98buMMql1fZQoaAZoCWgPQwg6rkZ2ZRRxQJSGlFKUaBVLxGgWR0CwPfsKkVN6dX2UKGgGaAloD0MIC9KMRVP7b0CUhpRSlGgVS8BoFkdAsD4Me8wpOXV9lChoBmgJaA9DCIVdFD2wV3NAlIaUUpRoFUvHaBZHQLA+NFqzqr11fZQoaAZoCWgPQwjecvVj00ZwQJSGlFKUaBVLxmgWR0CwPjlotcv/dX2UKGgGaAloD0MIDykGSDReUkCUhpRSlGgVS39oFkdAsD473oLXtnV9lChoBmgJaA9DCLr4257gw3FAlIaUUpRoFUvdaBZHQLA+O4TK1Xx1fZQoaAZoCWgPQwjikuNO6dVvQJSGlFKUaBVL1mgWR0CwPkTWkJrtdX2UKGgGaAloD0MIFM5uLRPfbkCUhpRSlGgVS85oFkdAsD5XMzMzM3V9lChoBmgJaA9DCNdrelCQbnFAlIaUUpRoFUuraBZHQLA+ZbRWtEJ1fZQoaAZoCWgPQwjkuinl9ZhwQJSGlFKUaBVLsWgWR0CwPmZqynk1dX2UKGgGaAloD0MIWkV/aCazckCUhpRSlGgVS7BoFkdAsD5xSWJJoXV9lChoBmgJaA9DCA+XHHcKXHJAlIaUUpRoFUvFaBZHQLA+nJGvwE11fZQoaAZoCWgPQwgLCRhd3rRwQJSGlFKUaBVLt2gWR0CwPr/b48EFdX2UKGgGaAloD0MIMWDJVey7ckCUhpRSlGgVS9NoFkdAsD7MqslsxnV9lChoBmgJaA9DCOEp5Eo9CnNAlIaUUpRoFUu+aBZHQLA+6Re1KGt1fZQoaAZoCWgPQwgkJT0MrfhzQJSGlFKUaBVLxGgWR0CwPvJxR2r5dX2UKGgGaAloD0MI2nQEcPNNcUCUhpRSlGgVS7poFkdAsD75/3Fkx3V9lChoBmgJaA9DCGA97lvtf3JAlIaUUpRoFUuxaBZHQLA/St9x6v91fZQoaAZoCWgPQwjOpiOAm3tvQJSGlFKUaBVLvWgWR0CwP2+Wv8qGdX2UKGgGaAloD0MIYto39xfZckCUhpRSlGgVS8RoFkdAsD+G3NLUTnV9lChoBmgJaA9DCEykNJvHUnJAlIaUUpRoFUvGaBZHQLA/ltrbg0l1fZQoaAZoCWgPQwgvNq0UggBxQJSGlFKUaBVLy2gWR0CwP5mRvFWGdX2UKGgGaAloD0MIYTPABRlIcUCUhpRSlGgVS7poFkdAsD+wUeuFH3V9lChoBmgJaA9DCDSeCOJ8ZXFAlIaUUpRoFUu6aBZHQLA/ry7wrlN1fZQoaAZoCWgPQwh40sJl1YFwQJSGlFKUaBVL4WgWR0CwP+17dBSldX2UKGgGaAloD0MIcy1agHYTc0CUhpRSlGgVS91oFkdAsD/4a5wwTXV9lChoBmgJaA9DCKBU+3R8jHJAlIaUUpRoFUvQaBZHQLBABvlEJBx1fZQoaAZoCWgPQwiPUglPKNlzQJSGlFKUaBVLzGgWR0CwQDEQbuMNdX2UKGgGaAloD0MIrTHohBBKckCUhpRSlGgVS71oFkdAsEBI9zOopHV9lChoBmgJaA9DCEevBigNCHNAlIaUUpRoFUvbaBZHQLBAXJBgNPR1fZQoaAZoCWgPQwg7Vb5nZPVyQJSGlFKUaBVLvmgWR0CwSj5Ge+VUdX2UKGgGaAloD0MIldQJaGIcc0CUhpRSlGgVS9VoFkdAsEpU7r9l3HV9lChoBmgJaA9DCJn091I4L3FAlIaUUpRoFUu/aBZHQLBKZ/6O5rh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1092, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb5de5bdc57d6bb1748080b5468a37f948264254ea88d206258c5e40937d4d6f
|
3 |
+
size 147395
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc._abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -37,7 +37,7 @@
|
|
37 |
},
|
38 |
"action_space": {
|
39 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
40 |
-
":serialized:": "gAWVOwEAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
41 |
"n": 4,
|
42 |
"start": 0,
|
43 |
"_shape": [],
|
@@ -45,21 +45,21 @@
|
|
45 |
"_np_random": "Generator(PCG64)"
|
46 |
},
|
47 |
"n_envs": 16,
|
48 |
-
"num_timesteps":
|
49 |
-
"_total_timesteps":
|
50 |
"_num_timesteps_at_start": 0,
|
51 |
-
"seed":
|
52 |
"action_noise": null,
|
53 |
-
"start_time":
|
54 |
"learning_rate": 0.0003,
|
55 |
-
"tensorboard_log":
|
56 |
"lr_schedule": {
|
57 |
":type:": "<class 'function'>",
|
58 |
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
59 |
},
|
60 |
"_last_obs": {
|
61 |
":type:": "<class 'numpy.ndarray'>",
|
62 |
-
":serialized:": "
|
63 |
},
|
64 |
"_last_episode_starts": {
|
65 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,16 +69,16 @@
|
|
69 |
"_episode_num": 0,
|
70 |
"use_sde": false,
|
71 |
"sde_sample_freq": -1,
|
72 |
-
"_current_progress_remaining": 0.
|
73 |
"ep_info_buffer": {
|
74 |
":type:": "<class 'collections.deque'>",
|
75 |
-
":serialized:": "
|
76 |
},
|
77 |
"ep_success_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
79 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
80 |
},
|
81 |
-
"_n_updates":
|
82 |
"n_steps": 1024,
|
83 |
"gamma": 0.999,
|
84 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb687327be0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb687327c70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb687327d00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb687327d90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb687327e20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb687327eb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb687327f40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb687338040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6873380d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb687338160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6873381f0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb6873315c0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
37 |
},
|
38 |
"action_space": {
|
39 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
40 |
+
":serialized:": "gAWVOwEAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGgbihAf7q0H+X49imGQTXTUsSIijANpbmOUihGtoV3MKuUd66Z4+6ysS1WTAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
41 |
"n": 4,
|
42 |
"start": 0,
|
43 |
"_shape": [],
|
|
|
45 |
"_np_random": "Generator(PCG64)"
|
46 |
},
|
47 |
"n_envs": 16,
|
48 |
+
"num_timesteps": 4473568,
|
49 |
+
"_total_timesteps": 8000000,
|
50 |
"_num_timesteps_at_start": 0,
|
51 |
+
"seed": 2684053579,
|
52 |
"action_noise": null,
|
53 |
+
"start_time": 1670963809691872880,
|
54 |
"learning_rate": 0.0003,
|
55 |
+
"tensorboard_log": "tensorboard-logs/ppo-LunarLander-v2/LunarLander-v2",
|
56 |
"lr_schedule": {
|
57 |
":type:": "<class 'function'>",
|
58 |
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmt1cy9zcmMvYWkvaGYtZHJsLy52ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFya3VzL3NyYy9haS9oZi1kcmwvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
59 |
},
|
60 |
"_last_obs": {
|
61 |
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACf6TxIZYK6UtR8vGjdADni5AS7IKppuAAAgD8AAIA/QITPvaqcGz9CtCI9Oq4Ev8emeb7NGfI9AAAAAAAAAADNVMU87MGUuyUSAL6X54E9p575PINLMbwAAIA/AACAP7NhPz04BK893anqvfqduL6fDUE9WvKBPAAAAAAAAAAAmhv0PZc6Sj8WWjY+gr4ov442fD6UAqa7AAAAAAAAAACGhhA+KXMvPsK+xL4BQri+ipM9vubt3L0AAAAAAAAAAPMCMD5UOoq89sooue7s8jfcJvG9zEyUOAAAgD8AAAAAzVYSvRTajbre0wa4ma8Os+yPMLvuXxw3AACAPwAAgD9m5pA7FFaKuoqo6jw/Tc4yhlIJu386njEAAIA/AACAPzMxDLyE4OE+GQ62OydqAb85suC8C67fPAAAAAAAAAAAAFQ4PLnVND9pZJu8IXYFv70vJ705pJq9AAAAAAAAAAAzhWe9Fra2PzU+j779GE6+DhntvXJaK74AAAAAAAAAAGYcq7zSU/27uo17O1c5lDxMGFe9Ntp3PQAAgD8AAIA/ZjB5POQUsj+Ik3g+4mBZvoEIjDurXF89AAAAAAAAAADmljc9lBawvMsJQz4LzAQ98QkKvU71NzwAAIA/AACAP5pDPzw2rw686kW4vP19bDx0EHk9yONGvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
63 |
},
|
64 |
"_last_episode_starts": {
|
65 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_episode_num": 0,
|
70 |
"use_sde": false,
|
71 |
"sde_sample_freq": -1,
|
72 |
+
"_current_progress_remaining": 0.44089599999999995,
|
73 |
"ep_info_buffer": {
|
74 |
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFJUNa6rqc0CUhpRSlIwBbJRLzYwBdJRHQLAyrbiIcip1fZQoaAZoCWgPQwiBeF2/YFdwQJSGlFKUaBVLtGgWR0CwMtEZzgdfdX2UKGgGaAloD0MIrtf0oKABckCUhpRSlGgVS7xoFkdAsDLomw7kn3V9lChoBmgJaA9DCMqkhjaAOnJAlIaUUpRoFUu4aBZHQLAzAuLaVUx1fZQoaAZoCWgPQwhBZfz7DApzQJSGlFKUaBVLz2gWR0CwMwP60pmVdX2UKGgGaAloD0MImyDqPgBbcUCUhpRSlGgVS79oFkdAsDMT6dlNDnV9lChoBmgJaA9DCJZ4QNkUYXBAlIaUUpRoFUvLaBZHQLAzECUX5311fZQoaAZoCWgPQwgNNJ9z9yJyQJSGlFKUaBVLqWgWR0CwMxPx6OYIdX2UKGgGaAloD0MIdGIP7WM7b0CUhpRSlGgVS7doFkdAsDMvyMDOknV9lChoBmgJaA9DCEypS8Yx/nBAlIaUUpRoFUvPaBZHQLAzLx7zCk51fZQoaAZoCWgPQwjGhm72h0hxQJSGlFKUaBVL1WgWR0CwMzA2qDK6dX2UKGgGaAloD0MI4stEEVLpcECUhpRSlGgVS9RoFkdAsDNLjJdSl3V9lChoBmgJaA9DCEaWzLE8u25AlIaUUpRoFUvHaBZHQLAzXn/T9bZ1fZQoaAZoCWgPQwiuZp3xPThxQJSGlFKUaBVLwWgWR0CwM2I55qubdX2UKGgGaAloD0MIePF+3P78cUCUhpRSlGgVS9BoFkdAsDNjkOqeb3V9lChoBmgJaA9DCCuGqwMgGnBAlIaUUpRoFUvFaBZHQLAzYpjtoi91fZQoaAZoCWgPQwiNf59x4eJxQJSGlFKUaBVLyGgWR0CwM3X27FsIdX2UKGgGaAloD0MILZPheD5ScECUhpRSlGgVS8hoFkdAsDrqyRjjJnV9lChoBmgJaA9DCFFNSdbh43JAlIaUUpRoFUu1aBZHQLA6+Zv1lGx1fZQoaAZoCWgPQwhTBg5oqXJyQJSGlFKUaBVLv2gWR0CwO1Xr+o9+dX2UKGgGaAloD0MIoBuaslNkb0CUhpRSlGgVS8toFkdAsDtgTi83/HV9lChoBmgJaA9DCKcIcHoXDW9AlIaUUpRoFUvKaBZHQLA7benhsIp1fZQoaAZoCWgPQwiiKNAnsixyQJSGlFKUaBVLt2gWR0CwO3yiudPMdX2UKGgGaAloD0MIYi0+BcBrc0CUhpRSlGgVS9VoFkdAsDuAb70nPXV9lChoBmgJaA9DCIxmZftQh3JAlIaUUpRoFUvcaBZHQLA7hpJwsGx1fZQoaAZoCWgPQwiDT3Py4u5yQJSGlFKUaBVL1GgWR0CwO5rx3FDOdX2UKGgGaAloD0MIkBZnDLMIcUCUhpRSlGgVS9hoFkdAsDuhnJ1aGHV9lChoBmgJaA9DCFyrPezFa3FAlIaUUpRoFUu8aBZHQLA7thAnlXB1fZQoaAZoCWgPQwhJDtjVpIByQJSGlFKUaBVLuGgWR0CwO7c+A3DOdX2UKGgGaAloD0MIaw97oQDbc0CUhpRSlGgVS9VoFkdAsDu9upCKJnV9lChoBmgJaA9DCDiB6bTuKXBAlIaUUpRoFUvGaBZHQLA7ydXT3Ix1fZQoaAZoCWgPQwhIT5FDBINxQJSGlFKUaBVLzGgWR0CwO9IUWVNYdX2UKGgGaAloD0MI43FRLWKxckCUhpRSlGgVS8BoFkdAsDvXnoxHoXV9lChoBmgJaA9DCPZDbLBwunJAlIaUUpRoFUu5aBZHQLA8CfD1oQF1fZQoaAZoCWgPQwi9qrNaYOByQJSGlFKUaBVLvWgWR0CwPBH9rGipdX2UKGgGaAloD0MIkbbxJ2qcckCUhpRSlGgVS8toFkdAsDxHWFvhqHV9lChoBmgJaA9DCJnWprG9InNAlIaUUpRoFUvLaBZHQLA8Umz0HyF1fZQoaAZoCWgPQwgGuYswhWNwQJSGlFKUaBVLx2gWR0CwPFrlvIfbdX2UKGgGaAloD0MIwqIiTif6cECUhpRSlGgVS79oFkdAsDxiX2M85nV9lChoBmgJaA9DCHOiXYXUonJAlIaUUpRoFUvGaBZHQLA8aCrLhaV1fZQoaAZoCWgPQwj4jERohENyQJSGlFKUaBVLvWgWR0CwPGhV+7UYdX2UKGgGaAloD0MIbjSAt4CxcUCUhpRSlGgVS7FoFkdAsDxwhTwUg3V9lChoBmgJaA9DCAxWnGptoXJAlIaUUpRoFUu5aBZHQLA8l5iExqR1fZQoaAZoCWgPQwg7pu7KrrlyQJSGlFKUaBVL0GgWR0CwPJrtmcvvdX2UKGgGaAloD0MInUfF/91JcECUhpRSlGgVS75oFkdAsDyj4TK1X3V9lChoBmgJaA9DCNnMIakF3m9AlIaUUpRoFUvNaBZHQLA8r/MW43F1fZQoaAZoCWgPQwjxuRPs/1BzQJSGlFKUaBVLv2gWR0CwPLnZGrjpdX2UKGgGaAloD0MIyCjPvNxTcUCUhpRSlGgVS8RoFkdAsDzHE4vN/3V9lChoBmgJaA9DCM3K9iFvYW5AlIaUUpRoFUvOaBZHQLA8xHGS6lN1fZQoaAZoCWgPQwgTfxR15ltuQJSGlFKUaBVLzGgWR0CwPPBYFJQMdX2UKGgGaAloD0MIc71tpoKTckCUhpRSlGgVS+VoFkdAsD0bk7wKB3V9lChoBmgJaA9DCIHoSZmURnJAlIaUUpRoFUvAaBZHQLA9MbvgFX91fZQoaAZoCWgPQwgjS+ZY3tZyQJSGlFKUaBVL1mgWR0CwPT0zj3mFdX2UKGgGaAloD0MIWKg1zXtTcECUhpRSlGgVS8NoFkdAsD1O24NI9XV9lChoBmgJaA9DCKZ7ndSXeXNAlIaUUpRoFUvNaBZHQLA9UX5WRzR1fZQoaAZoCWgPQwgRGVbxhmlyQJSGlFKUaBVL12gWR0CwPVfCMxXXdX2UKGgGaAloD0MInUgw1UzjcUCUhpRSlGgVS91oFkdAsD1krI5o5HV9lChoBmgJaA9DCIo6cw+Jg3NAlIaUUpRoFUvnaBZHQLA9ZAzHjp91fZQoaAZoCWgPQwgbnfNTHIdvQJSGlFKUaBVLz2gWR0CwPYy8vmHQdX2UKGgGaAloD0MIuYjvxOwYcUCUhpRSlGgVS89oFkdAsD2XpcHGCXV9lChoBmgJaA9DCIo8SbqmBnFAlIaUUpRoFUvgaBZHQLA9lEehf0F1fZQoaAZoCWgPQwhvKeeLfRNzQJSGlFKUaBVL32gWR0CwPZaagElmdX2UKGgGaAloD0MIiuPAqyUYcUCUhpRSlGgVS8xoFkdAsD2oKLKmsXV9lChoBmgJaA9DCFEVU+mnFG9AlIaUUpRoFUvUaBZHQLA9t1ZDArR1fZQoaAZoCWgPQwis/Z3tkehxQJSGlFKUaBVL52gWR0CwPb71VYITdX2UKGgGaAloD0MIPITx03jrcUCUhpRSlGgVS8NoFkdAsD3SEZiuuHV9lChoBmgJaA9DCP62J0hsiFJAlIaUUpRoFUt9aBZHQLA98buMMql1fZQoaAZoCWgPQwg6rkZ2ZRRxQJSGlFKUaBVLxGgWR0CwPfsKkVN6dX2UKGgGaAloD0MIC9KMRVP7b0CUhpRSlGgVS8BoFkdAsD4Me8wpOXV9lChoBmgJaA9DCIVdFD2wV3NAlIaUUpRoFUvHaBZHQLA+NFqzqr11fZQoaAZoCWgPQwjecvVj00ZwQJSGlFKUaBVLxmgWR0CwPjlotcv/dX2UKGgGaAloD0MIDykGSDReUkCUhpRSlGgVS39oFkdAsD473oLXtnV9lChoBmgJaA9DCLr4257gw3FAlIaUUpRoFUvdaBZHQLA+O4TK1Xx1fZQoaAZoCWgPQwjikuNO6dVvQJSGlFKUaBVL1mgWR0CwPkTWkJrtdX2UKGgGaAloD0MIFM5uLRPfbkCUhpRSlGgVS85oFkdAsD5XMzMzM3V9lChoBmgJaA9DCNdrelCQbnFAlIaUUpRoFUuraBZHQLA+ZbRWtEJ1fZQoaAZoCWgPQwjkuinl9ZhwQJSGlFKUaBVLsWgWR0CwPmZqynk1dX2UKGgGaAloD0MIWkV/aCazckCUhpRSlGgVS7BoFkdAsD5xSWJJoXV9lChoBmgJaA9DCA+XHHcKXHJAlIaUUpRoFUvFaBZHQLA+nJGvwE11fZQoaAZoCWgPQwgLCRhd3rRwQJSGlFKUaBVLt2gWR0CwPr/b48EFdX2UKGgGaAloD0MIMWDJVey7ckCUhpRSlGgVS9NoFkdAsD7MqslsxnV9lChoBmgJaA9DCOEp5Eo9CnNAlIaUUpRoFUu+aBZHQLA+6Re1KGt1fZQoaAZoCWgPQwgkJT0MrfhzQJSGlFKUaBVLxGgWR0CwPvJxR2r5dX2UKGgGaAloD0MI2nQEcPNNcUCUhpRSlGgVS7poFkdAsD75/3Fkx3V9lChoBmgJaA9DCGA97lvtf3JAlIaUUpRoFUuxaBZHQLA/St9x6v91fZQoaAZoCWgPQwjOpiOAm3tvQJSGlFKUaBVLvWgWR0CwP2+Wv8qGdX2UKGgGaAloD0MIYto39xfZckCUhpRSlGgVS8RoFkdAsD+G3NLUTnV9lChoBmgJaA9DCEykNJvHUnJAlIaUUpRoFUvGaBZHQLA/ltrbg0l1fZQoaAZoCWgPQwgvNq0UggBxQJSGlFKUaBVLy2gWR0CwP5mRvFWGdX2UKGgGaAloD0MIYTPABRlIcUCUhpRSlGgVS7poFkdAsD+wUeuFH3V9lChoBmgJaA9DCDSeCOJ8ZXFAlIaUUpRoFUu6aBZHQLA/ry7wrlN1fZQoaAZoCWgPQwh40sJl1YFwQJSGlFKUaBVL4WgWR0CwP+17dBSldX2UKGgGaAloD0MIcy1agHYTc0CUhpRSlGgVS91oFkdAsD/4a5wwTXV9lChoBmgJaA9DCKBU+3R8jHJAlIaUUpRoFUvQaBZHQLBABvlEJBx1fZQoaAZoCWgPQwiPUglPKNlzQJSGlFKUaBVLzGgWR0CwQDEQbuMNdX2UKGgGaAloD0MIrTHohBBKckCUhpRSlGgVS71oFkdAsEBI9zOopHV9lChoBmgJaA9DCEevBigNCHNAlIaUUpRoFUvbaBZHQLBAXJBgNPR1fZQoaAZoCWgPQwg7Vb5nZPVyQJSGlFKUaBVLvmgWR0CwSj5Ge+VUdX2UKGgGaAloD0MIldQJaGIcc0CUhpRSlGgVS9VoFkdAsEpU7r9l3HV9lChoBmgJaA9DCJn091I4L3FAlIaUUpRoFUu/aBZHQLBKZ/6O5rh1ZS4="
|
76 |
},
|
77 |
"ep_success_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
79 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
80 |
},
|
81 |
+
"_n_updates": 1092,
|
82 |
"n_steps": 1024,
|
83 |
"gamma": 0.999,
|
84 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87545
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fd1d441fd207c79c0628b598cf1159e8783c6d5dd1447638dd43ae941365f8d
|
3 |
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6e1fc51e5a39963d0493de4d17be8ca39c83f02f751e58aaf87d27ae87c2bf0
|
3 |
size 43073
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
OS: Linux-5.15.0-
|
2 |
Python: 3.10.6
|
3 |
Stable-Baselines3: 2.0.0a0
|
4 |
PyTorch: 1.13.0+cu117
|
|
|
1 |
+
OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022
|
2 |
Python: 3.10.6
|
3 |
Stable-Baselines3: 2.0.0a0
|
4 |
PyTorch: 1.13.0+cu117
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 306.6978838107272, "std_reward": 10.464198922928857, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T23:48:21.794543"}
|