Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- .idea/.gitignore +8 -0
- .idea/Meta-Llama-3.1-8B-Instruct-Arabic.iml +10 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +7 -0
- .idea/modules.xml +8 -0
- .idea/workspace.xml +63 -0
- LICENSE +114 -0
- README.md +1259 -3
- adapter_0.pt +3 -0
- adapter_config.json +1 -0
- adapter_model.bin +3 -0
- config.json +38 -0
- convert_llama_weights_to_hf.py +479 -0
- generation_config.json +12 -0
- hf.ipynb +126 -0
- hf_model_0001_0-003.pt +3 -0
- hf_model_0002_0-002.pt +3 -0
- hf_model_0003_0-004.pt +3 -0
- hf_model_0004_0.pt +3 -0
- pytorch_model.bin.index.json +1 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2062 -0
- venv/.gitignore +2 -0
- venv/bin/activate +87 -0
- venv/bin/activate.csh +55 -0
- venv/bin/activate.fish +103 -0
- venv/bin/activate.nu +96 -0
- venv/bin/activate.ps1 +61 -0
- venv/bin/activate_this.py +36 -0
- venv/bin/convert-caffe2-to-onnx +8 -0
- venv/bin/convert-onnx-to-caffe2 +8 -0
- venv/bin/debugpy +8 -0
- venv/bin/f2py +8 -0
- venv/bin/httpx +8 -0
- venv/bin/huggingface-cli +8 -0
- venv/bin/ipython +8 -0
- venv/bin/ipython3 +8 -0
- venv/bin/isympy +8 -0
- venv/bin/jlpm +8 -0
- venv/bin/jsonpointer +67 -0
- venv/bin/jsonschema +8 -0
- venv/bin/jupyter +8 -0
- venv/bin/jupyter-dejavu +8 -0
- venv/bin/jupyter-events +8 -0
- venv/bin/jupyter-execute +8 -0
- venv/bin/jupyter-kernel +8 -0
- venv/bin/jupyter-kernelspec +8 -0
- venv/bin/jupyter-lab +8 -0
.gitattributes
CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-darwin.so filter=lfs diff=lfs merge=lfs -text
|
37 |
+
venv/lib/python3.12/site-packages/sympy/polys/benchmarks/__pycache__/bench_solvers.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
38 |
+
venv/lib/python3.12/site-packages/tokenizers/tokenizers.cpython-312-darwin.so filter=lfs diff=lfs merge=lfs -text
|
39 |
+
venv/lib/python3.12/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
40 |
+
venv/lib/python3.12/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
venv/lib/python3.12/site-packages/torch/lib/libtorch_cpu.dylib filter=lfs diff=lfs merge=lfs -text
|
42 |
+
venv/lib/python3.12/site-packages/torch/lib/libtorch_python.dylib filter=lfs diff=lfs merge=lfs -text
|
43 |
+
venv/lib/python3.12/site-packages/zmq/.dylibs/libzmq.5.dylib filter=lfs diff=lfs merge=lfs -text
|
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/Meta-Llama-3.1-8B-Instruct-Arabic.iml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$">
|
5 |
+
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
6 |
+
</content>
|
7 |
+
<orderEntry type="jdk" jdkName="Python 3.12 (Meta-Llama-3.1-8B-Instruct-Arabic)" jdkType="Python SDK" />
|
8 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
9 |
+
</component>
|
10 |
+
</module>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="Black">
|
4 |
+
<option name="sdkName" value="Python 3.12" />
|
5 |
+
</component>
|
6 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.12 (Meta-Llama-3.1-8B-Instruct-Arabic)" project-jdk-type="Python SDK" />
|
7 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/Meta-Llama-3.1-8B-Instruct-Arabic.iml" filepath="$PROJECT_DIR$/.idea/Meta-Llama-3.1-8B-Instruct-Arabic.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/workspace.xml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="AutoImportSettings">
|
4 |
+
<option name="autoReloadType" value="SELECTIVE" />
|
5 |
+
</component>
|
6 |
+
<component name="ChangeListManager">
|
7 |
+
<list default="true" id="30119318-d6ae-4ae3-b519-266a6e7b372a" name="Changes" comment="" />
|
8 |
+
<option name="SHOW_DIALOG" value="false" />
|
9 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
10 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
11 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
12 |
+
</component>
|
13 |
+
<component name="FileTemplateManagerImpl">
|
14 |
+
<option name="RECENT_TEMPLATES">
|
15 |
+
<list>
|
16 |
+
<option value="Jupyter Notebook" />
|
17 |
+
</list>
|
18 |
+
</option>
|
19 |
+
</component>
|
20 |
+
<component name="ProjectColorInfo"><![CDATA[{
|
21 |
+
"associatedIndex": 2
|
22 |
+
}]]></component>
|
23 |
+
<component name="ProjectId" id="2ksNPt9QTkt1KjoI4SgdtOfor8H" />
|
24 |
+
<component name="ProjectViewState">
|
25 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
26 |
+
<option name="showLibraryContents" value="true" />
|
27 |
+
</component>
|
28 |
+
<component name="PropertiesComponent"><![CDATA[{
|
29 |
+
"keyToString": {
|
30 |
+
"RunOnceActivity.ShowReadmeOnStart": "true",
|
31 |
+
"last_opened_file_path": "/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic",
|
32 |
+
"node.js.detected.package.eslint": "true",
|
33 |
+
"node.js.detected.package.tslint": "true",
|
34 |
+
"node.js.selected.package.eslint": "(autodetect)",
|
35 |
+
"node.js.selected.package.tslint": "(autodetect)",
|
36 |
+
"nodejs_package_manager_path": "npm",
|
37 |
+
"vue.rearranger.settings.migration": "true"
|
38 |
+
}
|
39 |
+
}]]></component>
|
40 |
+
<component name="SharedIndexes">
|
41 |
+
<attachedChunks>
|
42 |
+
<set>
|
43 |
+
<option value="bundled-js-predefined-d6986cc7102b-410509235cf1-JavaScript-PY-242.20224.347" />
|
44 |
+
<option value="bundled-python-sdk-c2d6afa66fbe-39cff9de6eef-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-242.20224.347" />
|
45 |
+
</set>
|
46 |
+
</attachedChunks>
|
47 |
+
</component>
|
48 |
+
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
49 |
+
<component name="TaskManager">
|
50 |
+
<task active="true" id="Default" summary="Default task">
|
51 |
+
<changelist id="30119318-d6ae-4ae3-b519-266a6e7b372a" name="Changes" comment="" />
|
52 |
+
<created>1724068304075</created>
|
53 |
+
<option name="number" value="Default" />
|
54 |
+
<option name="presentableId" value="Default" />
|
55 |
+
<updated>1724068304075</updated>
|
56 |
+
<workItem from="1724068305239" duration="1945000" />
|
57 |
+
</task>
|
58 |
+
<servers />
|
59 |
+
</component>
|
60 |
+
<component name="TypeScriptGeneratedFilesManager">
|
61 |
+
<option name="version" value="3" />
|
62 |
+
</component>
|
63 |
+
</project>
|
LICENSE
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LLAMA 3.1 COMMUNITY LICENSE AGREEMENT
|
2 |
+
Llama 3.1 Version Release Date: July 23, 2024
|
3 |
+
|
4 |
+
“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the
|
5 |
+
Llama Materials set forth herein.
|
6 |
+
|
7 |
+
“Documentation” means the specifications, manuals and documentation accompanying Llama 3.1
|
8 |
+
distributed by Meta at https://llama.meta.com/doc/overview.
|
9 |
+
|
10 |
+
“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into
|
11 |
+
this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or
|
12 |
+
regulations to provide legal consent and that has legal authority to bind your employer or such other
|
13 |
+
person or entity if you are entering in this Agreement on their behalf.
|
14 |
+
|
15 |
+
“Llama 3.1” means the foundational large language models and software and algorithms, including
|
16 |
+
machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
|
17 |
+
fine-tuning enabling code and other elements of the foregoing distributed by Meta at
|
18 |
+
https://llama.meta.com/llama-downloads.
|
19 |
+
|
20 |
+
“Llama Materials” means, collectively, Meta’s proprietary Llama 3.1 and Documentation (and any
|
21 |
+
portion thereof) made available under this Agreement.
|
22 |
+
|
23 |
+
“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your
|
24 |
+
principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located
|
25 |
+
outside of the EEA or Switzerland).
|
26 |
+
|
27 |
+
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials,
|
28 |
+
you agree to be bound by this Agreement.
|
29 |
+
|
30 |
+
1. License Rights and Redistribution.
|
31 |
+
|
32 |
+
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free
|
33 |
+
limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama
|
34 |
+
Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the
|
35 |
+
Llama Materials.
|
36 |
+
|
37 |
+
b. Redistribution and Use.
|
38 |
+
|
39 |
+
i. If you distribute or make available the Llama Materials (or any derivative works
|
40 |
+
thereof), or a product or service (including another AI model) that contains any of them, you shall (A)
|
41 |
+
provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with
|
42 |
+
Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use
|
43 |
+
the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or
|
44 |
+
otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at
|
45 |
+
the beginning of any such AI model name.
|
46 |
+
|
47 |
+
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
|
48 |
+
of an integrated end user product, then Section 2 of this Agreement will not apply to you.
|
49 |
+
|
50 |
+
iii. You must retain in all copies of the Llama Materials that you distribute the following
|
51 |
+
attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.1 is
|
52 |
+
licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights
|
53 |
+
Reserved.”
|
54 |
+
|
55 |
+
iv. Your use of the Llama Materials must comply with applicable laws and regulations
|
56 |
+
(including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama
|
57 |
+
Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by
|
58 |
+
reference into this Agreement.
|
59 |
+
|
60 |
+
2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users
|
61 |
+
of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700
|
62 |
+
million monthly active users in the preceding calendar month, you must request a license from Meta,
|
63 |
+
which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the
|
64 |
+
rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
|
65 |
+
|
66 |
+
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY
|
67 |
+
OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF
|
68 |
+
ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,
|
69 |
+
INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,
|
70 |
+
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR
|
71 |
+
DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND
|
72 |
+
ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND
|
73 |
+
RESULTS.
|
74 |
+
|
75 |
+
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF
|
76 |
+
LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING
|
77 |
+
OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,
|
78 |
+
INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED
|
79 |
+
OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
80 |
+
|
81 |
+
5. Intellectual Property.
|
82 |
+
|
83 |
+
a. No trademark licenses are granted under this Agreement, and in connection with the Llama
|
84 |
+
Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other
|
85 |
+
or any of its affiliates, except as required for reasonable and customary use in describing and
|
86 |
+
redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to
|
87 |
+
use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will
|
88 |
+
comply with Meta’s brand guidelines (currently accessible at
|
89 |
+
https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use
|
90 |
+
of the Mark will inure to the benefit of Meta.
|
91 |
+
|
92 |
+
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with
|
93 |
+
respect to any derivative works and modifications of the Llama Materials that are made by you, as
|
94 |
+
between you and Meta, you are and will be the owner of such derivative works and modifications.
|
95 |
+
|
96 |
+
c. If you institute litigation or other proceedings against Meta or any entity (including a
|
97 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or
|
98 |
+
results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other
|
99 |
+
rights owned or licensable by you, then any licenses granted to you under this Agreement shall
|
100 |
+
terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold
|
101 |
+
harmless Meta from and against any claim by any third party arising out of or related to your use or
|
102 |
+
distribution of the Llama Materials.
|
103 |
+
|
104 |
+
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this
|
105 |
+
Agreement or access to the Llama Materials and will continue in full force and effect until terminated in
|
106 |
+
accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in
|
107 |
+
breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete
|
108 |
+
and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this
|
109 |
+
Agreement.
|
110 |
+
|
111 |
+
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of
|
112 |
+
the State of California without regard to choice of law principles, and the UN Convention on Contracts
|
113 |
+
for the International Sale of Goods does not apply to this Agreement. The courts of California shall have
|
114 |
+
exclusive jurisdiction of any dispute arising out of this Agreement.
|
README.md
CHANGED
@@ -1,3 +1,1259 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- de
|
5 |
+
- fr
|
6 |
+
- it
|
7 |
+
- pt
|
8 |
+
- hi
|
9 |
+
- es
|
10 |
+
- th
|
11 |
+
license: llama3.1
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
tags:
|
14 |
+
- facebook
|
15 |
+
- meta
|
16 |
+
- pytorch
|
17 |
+
- llama
|
18 |
+
- llama-3
|
19 |
+
extra_gated_prompt: "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version\
|
20 |
+
\ Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for\
|
21 |
+
\ use, reproduction, distribution and modification of the Llama Materials set forth\
|
22 |
+
\ herein.\n\"Documentation\" means the specifications, manuals and documentation\
|
23 |
+
\ accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\
|
24 |
+
\"Licensee\" or \"you\" means you, or your employer or any other person or entity\
|
25 |
+
\ (if you are entering into this Agreement on such person or entity’s behalf), of\
|
26 |
+
\ the age required under applicable laws, rules or regulations to provide legal\
|
27 |
+
\ consent and that has legal authority to bind your employer or such other person\
|
28 |
+
\ or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\"\
|
29 |
+
\ means the foundational large language models and software and algorithms, including\
|
30 |
+
\ machine-learning model code, trained model weights, inference-enabling code, training-enabling\
|
31 |
+
\ code, fine-tuning enabling code and other elements of the foregoing distributed\
|
32 |
+
\ by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means,\
|
33 |
+
\ collectively, Meta’s proprietary Llama 3.1 and Documentation (and any portion\
|
34 |
+
\ thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms\
|
35 |
+
\ Ireland Limited (if you are located in or, if you are an entity, your principal\
|
36 |
+
\ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you\
|
37 |
+
\ are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\n\
|
38 |
+
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\
|
39 |
+
\ and royalty-free limited license under Meta’s intellectual property or other rights\
|
40 |
+
\ owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy,\
|
41 |
+
\ create derivative works of, and make modifications to the Llama Materials.\nb.\
|
42 |
+
\ Redistribution and Use.\ni. If you distribute or make available the Llama Materials\
|
43 |
+
\ (or any derivative works thereof), or a product or service (including another\
|
44 |
+
\ AI model) that contains any of them, you shall (A) provide a copy of this Agreement\
|
45 |
+
\ with any such Llama Materials; and (B) prominently display “Built with Llama”\
|
46 |
+
\ on a related website, user interface, blogpost, about page, or product documentation.\
|
47 |
+
\ If you use the Llama Materials or any outputs or results of the Llama Materials\
|
48 |
+
\ to create, train, fine tune, or otherwise improve an AI model, which is distributed\
|
49 |
+
\ or made available, you shall also include “Llama” at the beginning of any such\
|
50 |
+
\ AI model name.\nii. If you receive Llama Materials, or any derivative works thereof,\
|
51 |
+
\ from a Licensee as part of an integrated end user product, then Section 2 of\
|
52 |
+
\ this Agreement will not apply to you.\niii. You must retain in all copies of the\
|
53 |
+
\ Llama Materials that you distribute the following attribution notice within a\
|
54 |
+
\ “Notice” text file distributed as a part of such copies: “Llama 3.1 is licensed\
|
55 |
+
\ under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights\
|
56 |
+
\ Reserved.”\niv. Your use of the Llama Materials must comply with applicable laws\
|
57 |
+
\ and regulations (including trade compliance laws and regulations) and adhere to\
|
58 |
+
\ the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy),\
|
59 |
+
\ which is hereby incorporated by reference into this Agreement.\n2. Additional\
|
60 |
+
\ Commercial Terms. If, on the Llama 3.1 version release date, the monthly active\
|
61 |
+
\ users of the products or services made available by or for Licensee, or Licensee’s\
|
62 |
+
\ affiliates, is greater than 700 million monthly active users in the preceding\
|
63 |
+
\ calendar month, you must request a license from Meta, which Meta may grant to\
|
64 |
+
\ you in its sole discretion, and you are not authorized to exercise any of the\
|
65 |
+
\ rights under this Agreement unless or until Meta otherwise expressly grants you\
|
66 |
+
\ such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE\
|
67 |
+
\ LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS”\
|
68 |
+
\ BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY\
|
69 |
+
\ KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\
|
70 |
+
\ OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.\
|
71 |
+
\ YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING\
|
72 |
+
\ THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA\
|
73 |
+
\ MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT\
|
74 |
+
\ WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN\
|
75 |
+
\ CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS\
|
76 |
+
\ AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,\
|
77 |
+
\ EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED\
|
78 |
+
\ OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No\
|
79 |
+
\ trademark licenses are granted under this Agreement, and in connection with the\
|
80 |
+
\ Llama Materials, neither Meta nor Licensee may use any name or mark owned by or\
|
81 |
+
\ associated with the other or any of its affiliates, except as required for reasonable\
|
82 |
+
\ and customary use in describing and redistributing the Llama Materials or as set\
|
83 |
+
\ forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the\
|
84 |
+
\ “Mark”) solely as required to comply with the last sentence of Section 1.b.i.\
|
85 |
+
\ You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/\
|
86 |
+
\ ). All goodwill arising out of your use of the Mark will inure to the benefit\
|
87 |
+
\ of Meta.\nb. Subject to Meta’s ownership of Llama Materials and derivatives made\
|
88 |
+
\ by or for Meta, with respect to any derivative works and modifications of the\
|
89 |
+
\ Llama Materials that are made by you, as between you and Meta, you are and will\
|
90 |
+
\ be the owner of such derivative works and modifications.\nc. If you institute\
|
91 |
+
\ litigation or other proceedings against Meta or any entity (including a cross-claim\
|
92 |
+
\ or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs\
|
93 |
+
\ or results, or any portion of any of the foregoing, constitutes infringement of\
|
94 |
+
\ intellectual property or other rights owned or licensable by you, then any licenses\
|
95 |
+
\ granted to you under this Agreement shall terminate as of the date such litigation\
|
96 |
+
\ or claim is filed or instituted. You will indemnify and hold harmless Meta from\
|
97 |
+
\ and against any claim by any third party arising out of or related to your use\
|
98 |
+
\ or distribution of the Llama Materials.\n6. Term and Termination. The term of\
|
99 |
+
\ this Agreement will commence upon your acceptance of this Agreement or access\
|
100 |
+
\ to the Llama Materials and will continue in full force and effect until terminated\
|
101 |
+
\ in accordance with the terms and conditions herein. Meta may terminate this Agreement\
|
102 |
+
\ if you are in breach of any term or condition of this Agreement. Upon termination\
|
103 |
+
\ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\
|
104 |
+
\ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\
|
105 |
+
\ and Jurisdiction. This Agreement will be governed and construed under the laws\
|
106 |
+
\ of the State of California without regard to choice of law principles, and the\
|
107 |
+
\ UN Convention on Contracts for the International Sale of Goods does not apply\
|
108 |
+
\ to this Agreement. The courts of California shall have exclusive jurisdiction\
|
109 |
+
\ of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\n\
|
110 |
+
Meta is committed to promoting safe and fair use of its tools and features, including\
|
111 |
+
\ Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy\
|
112 |
+
\ (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n\
|
113 |
+
#### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly.\
|
114 |
+
\ You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate\
|
115 |
+
\ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\
|
116 |
+
\ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
|
117 |
+
\ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\
|
118 |
+
\ or harm to children, including the solicitation, creation, acquisition, or dissemination\
|
119 |
+
\ of child exploitative content or failure to report Child Sexual Abuse Material\n\
|
120 |
+
\ 3. Human trafficking, exploitation, and sexual violence\n 4. The\
|
121 |
+
\ illegal distribution of information or materials to minors, including obscene\
|
122 |
+
\ materials, or failure to employ legally required age-gating in connection with\
|
123 |
+
\ such information or materials.\n 5. Sexual solicitation\n 6. Any\
|
124 |
+
\ other criminal activity\n 3. Engage in, promote, incite, or facilitate the\
|
125 |
+
\ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
|
126 |
+
\ 4. Engage in, promote, incite, or facilitate discrimination or other unlawful\
|
127 |
+
\ or harmful conduct in the provision of employment, employment benefits, credit,\
|
128 |
+
\ housing, other economic benefits, or other essential goods and services\n 5.\
|
129 |
+
\ Engage in the unauthorized or unlicensed practice of any profession including,\
|
130 |
+
\ but not limited to, financial, legal, medical/health, or related professional\
|
131 |
+
\ practices\n 6. Collect, process, disclose, generate, or infer health, demographic,\
|
132 |
+
\ or other sensitive personal or private information about individuals without rights\
|
133 |
+
\ and consents required by applicable laws\n 7. Engage in or facilitate any action\
|
134 |
+
\ or generate any content that infringes, misappropriates, or otherwise violates\
|
135 |
+
\ any third-party rights, including the outputs or results of any products or services\
|
136 |
+
\ using the Llama Materials\n 8. Create, generate, or facilitate the creation\
|
137 |
+
\ of malicious code, malware, computer viruses or do anything else that could disable,\
|
138 |
+
\ overburden, interfere with or impair the proper working, integrity, operation\
|
139 |
+
\ or appearance of a website or computer system\n2. Engage in, promote, incite,\
|
140 |
+
\ facilitate, or assist in the planning or development of activities that present\
|
141 |
+
\ a risk of death or bodily harm to individuals, including use of Llama 3.1 related\
|
142 |
+
\ to the following:\n 1. Military, warfare, nuclear industries or applications,\
|
143 |
+
\ espionage, use for materials or activities that are subject to the International\
|
144 |
+
\ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
|
145 |
+
\ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\
|
146 |
+
\ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\
|
147 |
+
\ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\
|
148 |
+
\ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\
|
149 |
+
\ content intended to incite or promote violence, abuse, or any infliction of bodily\
|
150 |
+
\ harm to an individual\n3. Intentionally deceive or mislead others, including use\
|
151 |
+
\ of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering\
|
152 |
+
\ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\
|
153 |
+
\ or furthering defamatory content, including the creation of defamatory statements,\
|
154 |
+
\ images, or other content\n 3. Generating, promoting, or further distributing\
|
155 |
+
\ spam\n 4. Impersonating another individual without consent, authorization,\
|
156 |
+
\ or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n\
|
157 |
+
\ 6. Generating or facilitating false online engagement, including fake reviews\
|
158 |
+
\ and other means of fake online engagement\n4. Fail to appropriately disclose to\
|
159 |
+
\ end users any known dangers of your AI system\nPlease report any violation of\
|
160 |
+
\ this Policy, software “bug,” or other problems that could lead to a violation\
|
161 |
+
\ of this Policy through one of the following means:\n * Reporting issues with\
|
162 |
+
\ the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n\
|
163 |
+
\ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\
|
164 |
+
\ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\
|
165 |
+
\ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]"
|
166 |
+
extra_gated_fields:
|
167 |
+
First Name: text
|
168 |
+
Last Name: text
|
169 |
+
Date of birth: date_picker
|
170 |
+
Country: country
|
171 |
+
Affiliation: text
|
172 |
+
Job title:
|
173 |
+
type: select
|
174 |
+
options:
|
175 |
+
- Student
|
176 |
+
- Research Graduate
|
177 |
+
- AI researcher
|
178 |
+
- AI developer/engineer
|
179 |
+
- Reporter
|
180 |
+
- Other
|
181 |
+
geo: ip_location
|
182 |
+
? By clicking Submit below I accept the terms of the license and acknowledge that
|
183 |
+
the information I provide will be collected stored processed and shared in accordance
|
184 |
+
with the Meta Privacy Policy
|
185 |
+
: checkbox
|
186 |
+
extra_gated_description: The information you provide will be collected, stored, processed
|
187 |
+
and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
|
188 |
+
extra_gated_button_content: Submit
|
189 |
+
---
|
190 |
+
|
191 |
+
## Model Information
|
192 |
+
|
193 |
+
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
|
194 |
+
|
195 |
+
**Model developer**: Meta
|
196 |
+
|
197 |
+
**Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
|
198 |
+
|
199 |
+
|
200 |
+
<table>
|
201 |
+
<tr>
|
202 |
+
<td>
|
203 |
+
</td>
|
204 |
+
<td><strong>Training Data</strong>
|
205 |
+
</td>
|
206 |
+
<td><strong>Params</strong>
|
207 |
+
</td>
|
208 |
+
<td><strong>Input modalities</strong>
|
209 |
+
</td>
|
210 |
+
<td><strong>Output modalities</strong>
|
211 |
+
</td>
|
212 |
+
<td><strong>Context length</strong>
|
213 |
+
</td>
|
214 |
+
<td><strong>GQA</strong>
|
215 |
+
</td>
|
216 |
+
<td><strong>Token count</strong>
|
217 |
+
</td>
|
218 |
+
<td><strong>Knowledge cutoff</strong>
|
219 |
+
</td>
|
220 |
+
</tr>
|
221 |
+
<tr>
|
222 |
+
<td rowspan="3" >Llama 3.1 (text only)
|
223 |
+
</td>
|
224 |
+
<td rowspan="3" >A new mix of publicly available online data.
|
225 |
+
</td>
|
226 |
+
<td>8B
|
227 |
+
</td>
|
228 |
+
<td>Multilingual Text
|
229 |
+
</td>
|
230 |
+
<td>Multilingual Text and code
|
231 |
+
</td>
|
232 |
+
<td>128k
|
233 |
+
</td>
|
234 |
+
<td>Yes
|
235 |
+
</td>
|
236 |
+
<td rowspan="3" >15T+
|
237 |
+
</td>
|
238 |
+
<td rowspan="3" >December 2023
|
239 |
+
</td>
|
240 |
+
</tr>
|
241 |
+
<tr>
|
242 |
+
<td>70B
|
243 |
+
</td>
|
244 |
+
<td>Multilingual Text
|
245 |
+
</td>
|
246 |
+
<td>Multilingual Text and code
|
247 |
+
</td>
|
248 |
+
<td>128k
|
249 |
+
</td>
|
250 |
+
<td>Yes
|
251 |
+
</td>
|
252 |
+
</tr>
|
253 |
+
<tr>
|
254 |
+
<td>405B
|
255 |
+
</td>
|
256 |
+
<td>Multilingual Text
|
257 |
+
</td>
|
258 |
+
<td>Multilingual Text and code
|
259 |
+
</td>
|
260 |
+
<td>128k
|
261 |
+
</td>
|
262 |
+
<td>Yes
|
263 |
+
</td>
|
264 |
+
</tr>
|
265 |
+
</table>
|
266 |
+
|
267 |
+
|
268 |
+
**Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
|
269 |
+
|
270 |
+
**Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
|
271 |
+
|
272 |
+
**Model Release Date:** July 23, 2024.
|
273 |
+
|
274 |
+
**Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
|
275 |
+
|
276 |
+
**License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
|
277 |
+
|
278 |
+
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
|
279 |
+
|
280 |
+
|
281 |
+
## Intended Use
|
282 |
+
|
283 |
+
**Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases.
|
284 |
+
|
285 |
+
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.
|
286 |
+
|
287 |
+
**<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner.
|
288 |
+
|
289 |
+
## How to use
|
290 |
+
|
291 |
+
This repository contains two versions of Meta-Llama-3.1-8B-Instruct, for use with transformers and with the original `llama` codebase.
|
292 |
+
|
293 |
+
### Use with transformers
|
294 |
+
|
295 |
+
Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
|
296 |
+
|
297 |
+
Make sure to update your transformers installation via `pip install --upgrade transformers`.
|
298 |
+
|
299 |
+
```python
|
300 |
+
import transformers
|
301 |
+
import torch
|
302 |
+
|
303 |
+
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
304 |
+
|
305 |
+
pipeline = transformers.pipeline(
|
306 |
+
"text-generation",
|
307 |
+
model=model_id,
|
308 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
309 |
+
device_map="auto",
|
310 |
+
)
|
311 |
+
|
312 |
+
messages = [
|
313 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
314 |
+
{"role": "user", "content": "Who are you?"},
|
315 |
+
]
|
316 |
+
|
317 |
+
outputs = pipeline(
|
318 |
+
messages,
|
319 |
+
max_new_tokens=256,
|
320 |
+
)
|
321 |
+
print(outputs[0]["generated_text"][-1])
|
322 |
+
```
|
323 |
+
|
324 |
+
Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
|
325 |
+
|
326 |
+
### Tool use with transformers
|
327 |
+
|
328 |
+
LLaMA-3.1 supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
|
329 |
+
|
330 |
+
Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
|
331 |
+
Here is a quick example showing a single simple tool:
|
332 |
+
|
333 |
+
```python
|
334 |
+
# First, define a tool
|
335 |
+
def get_current_temperature(location: str) -> float:
|
336 |
+
"""
|
337 |
+
Get the current temperature at a location.
|
338 |
+
|
339 |
+
Args:
|
340 |
+
location: The location to get the temperature for, in the format "City, Country"
|
341 |
+
Returns:
|
342 |
+
The current temperature at the specified location in the specified units, as a float.
|
343 |
+
"""
|
344 |
+
return 22. # A real function should probably actually get the temperature!
|
345 |
+
|
346 |
+
# Next, create a chat and apply the chat template
|
347 |
+
messages = [
|
348 |
+
{"role": "system", "content": "You are a bot that responds to weather queries."},
|
349 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
350 |
+
]
|
351 |
+
|
352 |
+
inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
353 |
+
```
|
354 |
+
|
355 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
356 |
+
|
357 |
+
```python
|
358 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
359 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
360 |
+
```
|
361 |
+
|
362 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
363 |
+
|
364 |
+
```python
|
365 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
366 |
+
```
|
367 |
+
|
368 |
+
After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
|
369 |
+
see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
|
370 |
+
|
371 |
+
|
372 |
+
### Use with `llama`
|
373 |
+
|
374 |
+
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
|
375 |
+
|
376 |
+
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
|
377 |
+
|
378 |
+
```
|
379 |
+
huggingface-cli download meta-llama/Meta-Llama-3.1-8B-Instruct --include "original/*" --local-dir Meta-Llama-3.1-8B-Instruct
|
380 |
+
```
|
381 |
+
|
382 |
+
## Hardware and Software
|
383 |
+
|
384 |
+
**Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
|
385 |
+
|
386 |
+
**Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
|
387 |
+
|
388 |
+
|
389 |
+
**Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
|
390 |
+
|
391 |
+
|
392 |
+
<table>
|
393 |
+
<tr>
|
394 |
+
<td>
|
395 |
+
</td>
|
396 |
+
<td><strong>Training Time (GPU hours)</strong>
|
397 |
+
</td>
|
398 |
+
<td><strong>Training Power Consumption (W)</strong>
|
399 |
+
</td>
|
400 |
+
<td><strong>Training Location-Based Greenhouse Gas Emissions</strong>
|
401 |
+
<p>
|
402 |
+
<strong>(tons CO2eq)</strong>
|
403 |
+
</td>
|
404 |
+
<td><strong>Training Market-Based Greenhouse Gas Emissions</strong>
|
405 |
+
<p>
|
406 |
+
<strong>(tons CO2eq)</strong>
|
407 |
+
</td>
|
408 |
+
</tr>
|
409 |
+
<tr>
|
410 |
+
<td>Llama 3.1 8B
|
411 |
+
</td>
|
412 |
+
<td>1.46M
|
413 |
+
</td>
|
414 |
+
<td>700
|
415 |
+
</td>
|
416 |
+
<td>420
|
417 |
+
</td>
|
418 |
+
<td>0
|
419 |
+
</td>
|
420 |
+
</tr>
|
421 |
+
<tr>
|
422 |
+
<td>Llama 3.1 70B
|
423 |
+
</td>
|
424 |
+
<td>7.0M
|
425 |
+
</td>
|
426 |
+
<td>700
|
427 |
+
</td>
|
428 |
+
<td>2,040
|
429 |
+
</td>
|
430 |
+
<td>0
|
431 |
+
</td>
|
432 |
+
</tr>
|
433 |
+
<tr>
|
434 |
+
<td>Llama 3.1 405B
|
435 |
+
</td>
|
436 |
+
<td>30.84M
|
437 |
+
</td>
|
438 |
+
<td>700
|
439 |
+
</td>
|
440 |
+
<td>8,930
|
441 |
+
</td>
|
442 |
+
<td>0
|
443 |
+
</td>
|
444 |
+
</tr>
|
445 |
+
<tr>
|
446 |
+
<td>Total
|
447 |
+
</td>
|
448 |
+
<td>39.3M
|
449 |
+
<td>
|
450 |
+
<ul>
|
451 |
+
|
452 |
+
</ul>
|
453 |
+
</td>
|
454 |
+
<td>11,390
|
455 |
+
</td>
|
456 |
+
<td>0
|
457 |
+
</td>
|
458 |
+
</tr>
|
459 |
+
</table>
|
460 |
+
|
461 |
+
|
462 |
+
|
463 |
+
The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
|
464 |
+
|
465 |
+
|
466 |
+
## Training Data
|
467 |
+
|
468 |
+
**Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
|
469 |
+
|
470 |
+
**Data Freshness:** The pretraining data has a cutoff of December 2023.
|
471 |
+
|
472 |
+
|
473 |
+
## Benchmark scores
|
474 |
+
|
475 |
+
In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library.
|
476 |
+
|
477 |
+
### Base pretrained models
|
478 |
+
|
479 |
+
|
480 |
+
<table>
|
481 |
+
<tr>
|
482 |
+
<td><strong>Category</strong>
|
483 |
+
</td>
|
484 |
+
<td><strong>Benchmark</strong>
|
485 |
+
</td>
|
486 |
+
<td><strong># Shots</strong>
|
487 |
+
</td>
|
488 |
+
<td><strong>Metric</strong>
|
489 |
+
</td>
|
490 |
+
<td><strong>Llama 3 8B</strong>
|
491 |
+
</td>
|
492 |
+
<td><strong>Llama 3.1 8B</strong>
|
493 |
+
</td>
|
494 |
+
<td><strong>Llama 3 70B</strong>
|
495 |
+
</td>
|
496 |
+
<td><strong>Llama 3.1 70B</strong>
|
497 |
+
</td>
|
498 |
+
<td><strong>Llama 3.1 405B</strong>
|
499 |
+
</td>
|
500 |
+
</tr>
|
501 |
+
<tr>
|
502 |
+
<td rowspan="7" >General
|
503 |
+
</td>
|
504 |
+
<td>MMLU
|
505 |
+
</td>
|
506 |
+
<td>5
|
507 |
+
</td>
|
508 |
+
<td>macro_avg/acc_char
|
509 |
+
</td>
|
510 |
+
<td>66.7
|
511 |
+
</td>
|
512 |
+
<td>66.7
|
513 |
+
</td>
|
514 |
+
<td>79.5
|
515 |
+
</td>
|
516 |
+
<td>79.3
|
517 |
+
</td>
|
518 |
+
<td>85.2
|
519 |
+
</td>
|
520 |
+
</tr>
|
521 |
+
<tr>
|
522 |
+
<td>MMLU-Pro (CoT)
|
523 |
+
</td>
|
524 |
+
<td>5
|
525 |
+
</td>
|
526 |
+
<td>macro_avg/acc_char
|
527 |
+
</td>
|
528 |
+
<td>36.2
|
529 |
+
</td>
|
530 |
+
<td>37.1
|
531 |
+
</td>
|
532 |
+
<td>55.0
|
533 |
+
</td>
|
534 |
+
<td>53.8
|
535 |
+
</td>
|
536 |
+
<td>61.6
|
537 |
+
</td>
|
538 |
+
</tr>
|
539 |
+
<tr>
|
540 |
+
<td>AGIEval English
|
541 |
+
</td>
|
542 |
+
<td>3-5
|
543 |
+
</td>
|
544 |
+
<td>average/acc_char
|
545 |
+
</td>
|
546 |
+
<td>47.1
|
547 |
+
</td>
|
548 |
+
<td>47.8
|
549 |
+
</td>
|
550 |
+
<td>63.0
|
551 |
+
</td>
|
552 |
+
<td>64.6
|
553 |
+
</td>
|
554 |
+
<td>71.6
|
555 |
+
</td>
|
556 |
+
</tr>
|
557 |
+
<tr>
|
558 |
+
<td>CommonSenseQA
|
559 |
+
</td>
|
560 |
+
<td>7
|
561 |
+
</td>
|
562 |
+
<td>acc_char
|
563 |
+
</td>
|
564 |
+
<td>72.6
|
565 |
+
</td>
|
566 |
+
<td>75.0
|
567 |
+
</td>
|
568 |
+
<td>83.8
|
569 |
+
</td>
|
570 |
+
<td>84.1
|
571 |
+
</td>
|
572 |
+
<td>85.8
|
573 |
+
</td>
|
574 |
+
</tr>
|
575 |
+
<tr>
|
576 |
+
<td>Winogrande
|
577 |
+
</td>
|
578 |
+
<td>5
|
579 |
+
</td>
|
580 |
+
<td>acc_char
|
581 |
+
</td>
|
582 |
+
<td>-
|
583 |
+
</td>
|
584 |
+
<td>60.5
|
585 |
+
</td>
|
586 |
+
<td>-
|
587 |
+
</td>
|
588 |
+
<td>83.3
|
589 |
+
</td>
|
590 |
+
<td>86.7
|
591 |
+
</td>
|
592 |
+
</tr>
|
593 |
+
<tr>
|
594 |
+
<td>BIG-Bench Hard (CoT)
|
595 |
+
</td>
|
596 |
+
<td>3
|
597 |
+
</td>
|
598 |
+
<td>average/em
|
599 |
+
</td>
|
600 |
+
<td>61.1
|
601 |
+
</td>
|
602 |
+
<td>64.2
|
603 |
+
</td>
|
604 |
+
<td>81.3
|
605 |
+
</td>
|
606 |
+
<td>81.6
|
607 |
+
</td>
|
608 |
+
<td>85.9
|
609 |
+
</td>
|
610 |
+
</tr>
|
611 |
+
<tr>
|
612 |
+
<td>ARC-Challenge
|
613 |
+
</td>
|
614 |
+
<td>25
|
615 |
+
</td>
|
616 |
+
<td>acc_char
|
617 |
+
</td>
|
618 |
+
<td>79.4
|
619 |
+
</td>
|
620 |
+
<td>79.7
|
621 |
+
</td>
|
622 |
+
<td>93.1
|
623 |
+
</td>
|
624 |
+
<td>92.9
|
625 |
+
</td>
|
626 |
+
<td>96.1
|
627 |
+
</td>
|
628 |
+
</tr>
|
629 |
+
<tr>
|
630 |
+
<td>Knowledge reasoning
|
631 |
+
</td>
|
632 |
+
<td>TriviaQA-Wiki
|
633 |
+
</td>
|
634 |
+
<td>5
|
635 |
+
</td>
|
636 |
+
<td>em
|
637 |
+
</td>
|
638 |
+
<td>78.5
|
639 |
+
</td>
|
640 |
+
<td>77.6
|
641 |
+
</td>
|
642 |
+
<td>89.7
|
643 |
+
</td>
|
644 |
+
<td>89.8
|
645 |
+
</td>
|
646 |
+
<td>91.8
|
647 |
+
</td>
|
648 |
+
</tr>
|
649 |
+
<tr>
|
650 |
+
<td rowspan="4" >Reading comprehension
|
651 |
+
</td>
|
652 |
+
<td>SQuAD
|
653 |
+
</td>
|
654 |
+
<td>1
|
655 |
+
</td>
|
656 |
+
<td>em
|
657 |
+
</td>
|
658 |
+
<td>76.4
|
659 |
+
</td>
|
660 |
+
<td>77.0
|
661 |
+
</td>
|
662 |
+
<td>85.6
|
663 |
+
</td>
|
664 |
+
<td>81.8
|
665 |
+
</td>
|
666 |
+
<td>89.3
|
667 |
+
</td>
|
668 |
+
</tr>
|
669 |
+
<tr>
|
670 |
+
<td>QuAC (F1)
|
671 |
+
</td>
|
672 |
+
<td>1
|
673 |
+
</td>
|
674 |
+
<td>f1
|
675 |
+
</td>
|
676 |
+
<td>44.4
|
677 |
+
</td>
|
678 |
+
<td>44.9
|
679 |
+
</td>
|
680 |
+
<td>51.1
|
681 |
+
</td>
|
682 |
+
<td>51.1
|
683 |
+
</td>
|
684 |
+
<td>53.6
|
685 |
+
</td>
|
686 |
+
</tr>
|
687 |
+
<tr>
|
688 |
+
<td>BoolQ
|
689 |
+
</td>
|
690 |
+
<td>0
|
691 |
+
</td>
|
692 |
+
<td>acc_char
|
693 |
+
</td>
|
694 |
+
<td>75.7
|
695 |
+
</td>
|
696 |
+
<td>75.0
|
697 |
+
</td>
|
698 |
+
<td>79.0
|
699 |
+
</td>
|
700 |
+
<td>79.4
|
701 |
+
</td>
|
702 |
+
<td>80.0
|
703 |
+
</td>
|
704 |
+
</tr>
|
705 |
+
<tr>
|
706 |
+
<td>DROP (F1)
|
707 |
+
</td>
|
708 |
+
<td>3
|
709 |
+
</td>
|
710 |
+
<td>f1
|
711 |
+
</td>
|
712 |
+
<td>58.4
|
713 |
+
</td>
|
714 |
+
<td>59.5
|
715 |
+
</td>
|
716 |
+
<td>79.7
|
717 |
+
</td>
|
718 |
+
<td>79.6
|
719 |
+
</td>
|
720 |
+
<td>84.8
|
721 |
+
</td>
|
722 |
+
</tr>
|
723 |
+
</table>
|
724 |
+
|
725 |
+
|
726 |
+
|
727 |
+
### Instruction tuned models
|
728 |
+
|
729 |
+
|
730 |
+
<table>
|
731 |
+
<tr>
|
732 |
+
<td><strong>Category</strong>
|
733 |
+
</td>
|
734 |
+
<td><strong>Benchmark</strong>
|
735 |
+
</td>
|
736 |
+
<td><strong># Shots</strong>
|
737 |
+
</td>
|
738 |
+
<td><strong>Metric</strong>
|
739 |
+
</td>
|
740 |
+
<td><strong>Llama 3 8B Instruct</strong>
|
741 |
+
</td>
|
742 |
+
<td><strong>Llama 3.1 8B Instruct</strong>
|
743 |
+
</td>
|
744 |
+
<td><strong>Llama 3 70B Instruct</strong>
|
745 |
+
</td>
|
746 |
+
<td><strong>Llama 3.1 70B Instruct</strong>
|
747 |
+
</td>
|
748 |
+
<td><strong>Llama 3.1 405B Instruct</strong>
|
749 |
+
</td>
|
750 |
+
</tr>
|
751 |
+
<tr>
|
752 |
+
<td rowspan="4" >General
|
753 |
+
</td>
|
754 |
+
<td>MMLU
|
755 |
+
</td>
|
756 |
+
<td>5
|
757 |
+
</td>
|
758 |
+
<td>macro_avg/acc
|
759 |
+
</td>
|
760 |
+
<td>68.5
|
761 |
+
</td>
|
762 |
+
<td>69.4
|
763 |
+
</td>
|
764 |
+
<td>82.0
|
765 |
+
</td>
|
766 |
+
<td>83.6
|
767 |
+
</td>
|
768 |
+
<td>87.3
|
769 |
+
</td>
|
770 |
+
</tr>
|
771 |
+
<tr>
|
772 |
+
<td>MMLU (CoT)
|
773 |
+
</td>
|
774 |
+
<td>0
|
775 |
+
</td>
|
776 |
+
<td>macro_avg/acc
|
777 |
+
</td>
|
778 |
+
<td>65.3
|
779 |
+
</td>
|
780 |
+
<td>73.0
|
781 |
+
</td>
|
782 |
+
<td>80.9
|
783 |
+
</td>
|
784 |
+
<td>86.0
|
785 |
+
</td>
|
786 |
+
<td>88.6
|
787 |
+
</td>
|
788 |
+
</tr>
|
789 |
+
<tr>
|
790 |
+
<td>MMLU-Pro (CoT)
|
791 |
+
</td>
|
792 |
+
<td>5
|
793 |
+
</td>
|
794 |
+
<td>micro_avg/acc_char
|
795 |
+
</td>
|
796 |
+
<td>45.5
|
797 |
+
</td>
|
798 |
+
<td>48.3
|
799 |
+
</td>
|
800 |
+
<td>63.4
|
801 |
+
</td>
|
802 |
+
<td>66.4
|
803 |
+
</td>
|
804 |
+
<td>73.3
|
805 |
+
</td>
|
806 |
+
</tr>
|
807 |
+
<tr>
|
808 |
+
<td>IFEval
|
809 |
+
</td>
|
810 |
+
<td>
|
811 |
+
</td>
|
812 |
+
<td>
|
813 |
+
</td>
|
814 |
+
<td>76.8
|
815 |
+
</td>
|
816 |
+
<td>80.4
|
817 |
+
</td>
|
818 |
+
<td>82.9
|
819 |
+
</td>
|
820 |
+
<td>87.5
|
821 |
+
</td>
|
822 |
+
<td>88.6
|
823 |
+
</td>
|
824 |
+
</tr>
|
825 |
+
<tr>
|
826 |
+
<td rowspan="2" >Reasoning
|
827 |
+
</td>
|
828 |
+
<td>ARC-C
|
829 |
+
</td>
|
830 |
+
<td>0
|
831 |
+
</td>
|
832 |
+
<td>acc
|
833 |
+
</td>
|
834 |
+
<td>82.4
|
835 |
+
</td>
|
836 |
+
<td>83.4
|
837 |
+
</td>
|
838 |
+
<td>94.4
|
839 |
+
</td>
|
840 |
+
<td>94.8
|
841 |
+
</td>
|
842 |
+
<td>96.9
|
843 |
+
</td>
|
844 |
+
</tr>
|
845 |
+
<tr>
|
846 |
+
<td>GPQA
|
847 |
+
</td>
|
848 |
+
<td>0
|
849 |
+
</td>
|
850 |
+
<td>em
|
851 |
+
</td>
|
852 |
+
<td>34.6
|
853 |
+
</td>
|
854 |
+
<td>30.4
|
855 |
+
</td>
|
856 |
+
<td>39.5
|
857 |
+
</td>
|
858 |
+
<td>41.7
|
859 |
+
</td>
|
860 |
+
<td>50.7
|
861 |
+
</td>
|
862 |
+
</tr>
|
863 |
+
<tr>
|
864 |
+
<td rowspan="4" >Code
|
865 |
+
</td>
|
866 |
+
<td>HumanEval
|
867 |
+
</td>
|
868 |
+
<td>0
|
869 |
+
</td>
|
870 |
+
<td>pass@1
|
871 |
+
</td>
|
872 |
+
<td>60.4
|
873 |
+
</td>
|
874 |
+
<td>72.6
|
875 |
+
</td>
|
876 |
+
<td>81.7
|
877 |
+
</td>
|
878 |
+
<td>80.5
|
879 |
+
</td>
|
880 |
+
<td>89.0
|
881 |
+
</td>
|
882 |
+
</tr>
|
883 |
+
<tr>
|
884 |
+
<td>MBPP ++ base version
|
885 |
+
</td>
|
886 |
+
<td>0
|
887 |
+
</td>
|
888 |
+
<td>pass@1
|
889 |
+
</td>
|
890 |
+
<td>70.6
|
891 |
+
</td>
|
892 |
+
<td>72.8
|
893 |
+
</td>
|
894 |
+
<td>82.5
|
895 |
+
</td>
|
896 |
+
<td>86.0
|
897 |
+
</td>
|
898 |
+
<td>88.6
|
899 |
+
</td>
|
900 |
+
</tr>
|
901 |
+
<tr>
|
902 |
+
<td>Multipl-E HumanEval
|
903 |
+
</td>
|
904 |
+
<td>0
|
905 |
+
</td>
|
906 |
+
<td>pass@1
|
907 |
+
</td>
|
908 |
+
<td>-
|
909 |
+
</td>
|
910 |
+
<td>50.8
|
911 |
+
</td>
|
912 |
+
<td>-
|
913 |
+
</td>
|
914 |
+
<td>65.5
|
915 |
+
</td>
|
916 |
+
<td>75.2
|
917 |
+
</td>
|
918 |
+
</tr>
|
919 |
+
<tr>
|
920 |
+
<td>Multipl-E MBPP
|
921 |
+
</td>
|
922 |
+
<td>0
|
923 |
+
</td>
|
924 |
+
<td>pass@1
|
925 |
+
</td>
|
926 |
+
<td>-
|
927 |
+
</td>
|
928 |
+
<td>52.4
|
929 |
+
</td>
|
930 |
+
<td>-
|
931 |
+
</td>
|
932 |
+
<td>62.0
|
933 |
+
</td>
|
934 |
+
<td>65.7
|
935 |
+
</td>
|
936 |
+
</tr>
|
937 |
+
<tr>
|
938 |
+
<td rowspan="2" >Math
|
939 |
+
</td>
|
940 |
+
<td>GSM-8K (CoT)
|
941 |
+
</td>
|
942 |
+
<td>8
|
943 |
+
</td>
|
944 |
+
<td>em_maj1@1
|
945 |
+
</td>
|
946 |
+
<td>80.6
|
947 |
+
</td>
|
948 |
+
<td>84.5
|
949 |
+
</td>
|
950 |
+
<td>93.0
|
951 |
+
</td>
|
952 |
+
<td>95.1
|
953 |
+
</td>
|
954 |
+
<td>96.8
|
955 |
+
</td>
|
956 |
+
</tr>
|
957 |
+
<tr>
|
958 |
+
<td>MATH (CoT)
|
959 |
+
</td>
|
960 |
+
<td>0
|
961 |
+
</td>
|
962 |
+
<td>final_em
|
963 |
+
</td>
|
964 |
+
<td>29.1
|
965 |
+
</td>
|
966 |
+
<td>51.9
|
967 |
+
</td>
|
968 |
+
<td>51.0
|
969 |
+
</td>
|
970 |
+
<td>68.0
|
971 |
+
</td>
|
972 |
+
<td>73.8
|
973 |
+
</td>
|
974 |
+
</tr>
|
975 |
+
<tr>
|
976 |
+
<td rowspan="4" >Tool Use
|
977 |
+
</td>
|
978 |
+
<td>API-Bank
|
979 |
+
</td>
|
980 |
+
<td>0
|
981 |
+
</td>
|
982 |
+
<td>acc
|
983 |
+
</td>
|
984 |
+
<td>48.3
|
985 |
+
</td>
|
986 |
+
<td>82.6
|
987 |
+
</td>
|
988 |
+
<td>85.1
|
989 |
+
</td>
|
990 |
+
<td>90.0
|
991 |
+
</td>
|
992 |
+
<td>92.0
|
993 |
+
</td>
|
994 |
+
</tr>
|
995 |
+
<tr>
|
996 |
+
<td>BFCL
|
997 |
+
</td>
|
998 |
+
<td>0
|
999 |
+
</td>
|
1000 |
+
<td>acc
|
1001 |
+
</td>
|
1002 |
+
<td>60.3
|
1003 |
+
</td>
|
1004 |
+
<td>76.1
|
1005 |
+
</td>
|
1006 |
+
<td>83.0
|
1007 |
+
</td>
|
1008 |
+
<td>84.8
|
1009 |
+
</td>
|
1010 |
+
<td>88.5
|
1011 |
+
</td>
|
1012 |
+
</tr>
|
1013 |
+
<tr>
|
1014 |
+
<td>Gorilla Benchmark API Bench
|
1015 |
+
</td>
|
1016 |
+
<td>0
|
1017 |
+
</td>
|
1018 |
+
<td>acc
|
1019 |
+
</td>
|
1020 |
+
<td>1.7
|
1021 |
+
</td>
|
1022 |
+
<td>8.2
|
1023 |
+
</td>
|
1024 |
+
<td>14.7
|
1025 |
+
</td>
|
1026 |
+
<td>29.7
|
1027 |
+
</td>
|
1028 |
+
<td>35.3
|
1029 |
+
</td>
|
1030 |
+
</tr>
|
1031 |
+
<tr>
|
1032 |
+
<td>Nexus (0-shot)
|
1033 |
+
</td>
|
1034 |
+
<td>0
|
1035 |
+
</td>
|
1036 |
+
<td>macro_avg/acc
|
1037 |
+
</td>
|
1038 |
+
<td>18.1
|
1039 |
+
</td>
|
1040 |
+
<td>38.5
|
1041 |
+
</td>
|
1042 |
+
<td>47.8
|
1043 |
+
</td>
|
1044 |
+
<td>56.7
|
1045 |
+
</td>
|
1046 |
+
<td>58.7
|
1047 |
+
</td>
|
1048 |
+
</tr>
|
1049 |
+
<tr>
|
1050 |
+
<td>Multilingual
|
1051 |
+
</td>
|
1052 |
+
<td>Multilingual MGSM (CoT)
|
1053 |
+
</td>
|
1054 |
+
<td>0
|
1055 |
+
</td>
|
1056 |
+
<td>em
|
1057 |
+
</td>
|
1058 |
+
<td>-
|
1059 |
+
</td>
|
1060 |
+
<td>68.9
|
1061 |
+
</td>
|
1062 |
+
<td>-
|
1063 |
+
</td>
|
1064 |
+
<td>86.9
|
1065 |
+
</td>
|
1066 |
+
<td>91.6
|
1067 |
+
</td>
|
1068 |
+
</tr>
|
1069 |
+
</table>
|
1070 |
+
|
1071 |
+
#### Multilingual benchmarks
|
1072 |
+
|
1073 |
+
<table>
|
1074 |
+
<tr>
|
1075 |
+
<td><strong>Category</strong>
|
1076 |
+
</td>
|
1077 |
+
<td><strong>Benchmark</strong>
|
1078 |
+
</td>
|
1079 |
+
<td><strong>Language</strong>
|
1080 |
+
</td>
|
1081 |
+
<td><strong>Llama 3.1 8B</strong>
|
1082 |
+
</td>
|
1083 |
+
<td><strong>Llama 3.1 70B</strong>
|
1084 |
+
</td>
|
1085 |
+
<td><strong>Llama 3.1 405B</strong>
|
1086 |
+
</td>
|
1087 |
+
</tr>
|
1088 |
+
<tr>
|
1089 |
+
<td rowspan="9" ><strong>General</strong>
|
1090 |
+
</td>
|
1091 |
+
<td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
|
1092 |
+
</td>
|
1093 |
+
<td>Portuguese
|
1094 |
+
</td>
|
1095 |
+
<td>62.12
|
1096 |
+
</td>
|
1097 |
+
<td>80.13
|
1098 |
+
</td>
|
1099 |
+
<td>84.95
|
1100 |
+
</td>
|
1101 |
+
</tr>
|
1102 |
+
<tr>
|
1103 |
+
<td>Spanish
|
1104 |
+
</td>
|
1105 |
+
<td>62.45
|
1106 |
+
</td>
|
1107 |
+
<td>80.05
|
1108 |
+
</td>
|
1109 |
+
<td>85.08
|
1110 |
+
</td>
|
1111 |
+
</tr>
|
1112 |
+
<tr>
|
1113 |
+
<td>Italian
|
1114 |
+
</td>
|
1115 |
+
<td>61.63
|
1116 |
+
</td>
|
1117 |
+
<td>80.4
|
1118 |
+
</td>
|
1119 |
+
<td>85.04
|
1120 |
+
</td>
|
1121 |
+
</tr>
|
1122 |
+
<tr>
|
1123 |
+
<td>German
|
1124 |
+
</td>
|
1125 |
+
<td>60.59
|
1126 |
+
</td>
|
1127 |
+
<td>79.27
|
1128 |
+
</td>
|
1129 |
+
<td>84.36
|
1130 |
+
</td>
|
1131 |
+
</tr>
|
1132 |
+
<tr>
|
1133 |
+
<td>French
|
1134 |
+
</td>
|
1135 |
+
<td>62.34
|
1136 |
+
</td>
|
1137 |
+
<td>79.82
|
1138 |
+
</td>
|
1139 |
+
<td>84.66
|
1140 |
+
</td>
|
1141 |
+
</tr>
|
1142 |
+
<tr>
|
1143 |
+
<td>Hindi
|
1144 |
+
</td>
|
1145 |
+
<td>50.88
|
1146 |
+
</td>
|
1147 |
+
<td>74.52
|
1148 |
+
</td>
|
1149 |
+
<td>80.31
|
1150 |
+
</td>
|
1151 |
+
</tr>
|
1152 |
+
<tr>
|
1153 |
+
<td>Thai
|
1154 |
+
</td>
|
1155 |
+
<td>50.32
|
1156 |
+
</td>
|
1157 |
+
<td>72.95
|
1158 |
+
</td>
|
1159 |
+
<td>78.21
|
1160 |
+
</td>
|
1161 |
+
</tr>
|
1162 |
+
</table>
|
1163 |
+
|
1164 |
+
|
1165 |
+
|
1166 |
+
## Responsibility & Safety
|
1167 |
+
|
1168 |
+
As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
|
1169 |
+
|
1170 |
+
|
1171 |
+
|
1172 |
+
* Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
|
1173 |
+
* Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
|
1174 |
+
* Provide protections for the community to help prevent the misuse of our models.
|
1175 |
+
|
1176 |
+
|
1177 |
+
### Responsible deployment
|
1178 |
+
|
1179 |
+
Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
|
1180 |
+
|
1181 |
+
|
1182 |
+
#### Llama 3.1 instruct
|
1183 |
+
|
1184 |
+
Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
|
1185 |
+
|
1186 |
+
**Fine-tuning data**
|
1187 |
+
|
1188 |
+
We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
|
1189 |
+
|
1190 |
+
**Refusals and Tone**
|
1191 |
+
|
1192 |
+
Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
|
1193 |
+
|
1194 |
+
|
1195 |
+
#### Llama 3.1 systems
|
1196 |
+
|
1197 |
+
**Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
|
1198 |
+
|
1199 |
+
As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
|
1200 |
+
|
1201 |
+
|
1202 |
+
#### New capabilities
|
1203 |
+
|
1204 |
+
Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases.
|
1205 |
+
|
1206 |
+
**Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
|
1207 |
+
|
1208 |
+
**Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
|
1209 |
+
|
1210 |
+
|
1211 |
+
### Evaluations
|
1212 |
+
|
1213 |
+
We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
|
1214 |
+
|
1215 |
+
Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
|
1216 |
+
|
1217 |
+
**Red teaming**
|
1218 |
+
|
1219 |
+
For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
|
1220 |
+
|
1221 |
+
We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
|
1222 |
+
|
1223 |
+
|
1224 |
+
### Critical and other risks
|
1225 |
+
|
1226 |
+
We specifically focused our efforts on mitigating the following critical risk areas:
|
1227 |
+
|
1228 |
+
**1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
|
1229 |
+
|
1230 |
+
To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
|
1231 |
+
|
1232 |
+
|
1233 |
+
**2. Child Safety**
|
1234 |
+
|
1235 |
+
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
|
1236 |
+
|
1237 |
+
**3. Cyber attack enablement**
|
1238 |
+
|
1239 |
+
Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
|
1240 |
+
|
1241 |
+
Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
|
1242 |
+
|
1243 |
+
Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more.
|
1244 |
+
|
1245 |
+
|
1246 |
+
### Community
|
1247 |
+
|
1248 |
+
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
|
1249 |
+
|
1250 |
+
We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
|
1251 |
+
|
1252 |
+
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
|
1253 |
+
|
1254 |
+
|
1255 |
+
## Ethical Considerations and Limitations
|
1256 |
+
|
1257 |
+
The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
|
1258 |
+
|
1259 |
+
But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
|
adapter_0.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a920776f3226209efbd37ddda972cc2cb8632787d85e32514f289eb3e83184dc
|
3 |
+
size 88272826
|
adapter_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"r": 16, "lora_alpha": 16, "target_modules": ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "down_proj", "up_proj", "lm_head"], "peft_type": "LORA"}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19ef22df55fa014595d93123e022464bdbc704750b266ba555a7e8f7fe7d12a4
|
3 |
+
size 88285778
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 128000,
|
8 |
+
"eos_token_id": [
|
9 |
+
128001,
|
10 |
+
128008,
|
11 |
+
128009
|
12 |
+
],
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 14336,
|
17 |
+
"max_position_embeddings": 131072,
|
18 |
+
"mlp_bias": false,
|
19 |
+
"model_type": "llama",
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_hidden_layers": 32,
|
22 |
+
"num_key_value_heads": 8,
|
23 |
+
"pretraining_tp": 1,
|
24 |
+
"rms_norm_eps": 1e-05,
|
25 |
+
"rope_scaling": {
|
26 |
+
"factor": 8.0,
|
27 |
+
"low_freq_factor": 1.0,
|
28 |
+
"high_freq_factor": 4.0,
|
29 |
+
"original_max_position_embeddings": 8192,
|
30 |
+
"rope_type": "llama3"
|
31 |
+
},
|
32 |
+
"rope_theta": 500000.0,
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"torch_dtype": "bfloat16",
|
35 |
+
"transformers_version": "4.42.3",
|
36 |
+
"use_cache": true,
|
37 |
+
"vocab_size": 128256
|
38 |
+
}
|
convert_llama_weights_to_hf.py
ADDED
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import argparse
|
15 |
+
import gc
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import shutil
|
19 |
+
import warnings
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from transformers import GenerationConfig, LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
|
25 |
+
from transformers.convert_slow_tokenizer import TikTokenConverter
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
from transformers import LlamaTokenizerFast
|
30 |
+
except ImportError as e:
|
31 |
+
warnings.warn(e)
|
32 |
+
warnings.warn(
|
33 |
+
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
34 |
+
)
|
35 |
+
LlamaTokenizerFast = None
|
36 |
+
|
37 |
+
"""
|
38 |
+
Sample usage:
|
39 |
+
|
40 |
+
```
|
41 |
+
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
42 |
+
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
43 |
+
```
|
44 |
+
|
45 |
+
Thereafter, models can be loaded via:
|
46 |
+
|
47 |
+
```py
|
48 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
49 |
+
|
50 |
+
model = LlamaForCausalLM.from_pretrained("/output/path")
|
51 |
+
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
|
52 |
+
```
|
53 |
+
|
54 |
+
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
55 |
+
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
56 |
+
|
57 |
+
If you want you tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor:
|
58 |
+
|
59 |
+
```py
|
60 |
+
from tokenizers import processors
|
61 |
+
bos = "<|begin_of_text|>"
|
62 |
+
tokenizer._tokenizers.post_processor = processors.Sequence(
|
63 |
+
[
|
64 |
+
processors.ByteLevel(trim_offsets=False),
|
65 |
+
processors.TemplateProcessing(
|
66 |
+
single=f"{bos}:0 $A:0",
|
67 |
+
pair=f"{bos}:0 $A:0 {bos}:1 $B:1",
|
68 |
+
special_tokens=[
|
69 |
+
(bos, tokenizer.encode(bos)),
|
70 |
+
],
|
71 |
+
),
|
72 |
+
]
|
73 |
+
)
|
74 |
+
```
|
75 |
+
"""
|
76 |
+
|
77 |
+
NUM_SHARDS = {
|
78 |
+
"7B": 1,
|
79 |
+
"8B": 1,
|
80 |
+
"8Bf": 1,
|
81 |
+
"7Bf": 1,
|
82 |
+
"13B": 2,
|
83 |
+
"13Bf": 2,
|
84 |
+
"34B": 4,
|
85 |
+
"30B": 4,
|
86 |
+
"65B": 8,
|
87 |
+
"70B": 8,
|
88 |
+
"70Bf": 8,
|
89 |
+
"405B": 8,
|
90 |
+
"405B-MP16": 16,
|
91 |
+
}
|
92 |
+
|
93 |
+
CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048}
|
94 |
+
|
95 |
+
|
96 |
+
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
|
97 |
+
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
|
98 |
+
|
99 |
+
|
100 |
+
def read_json(path):
|
101 |
+
with open(path, "r") as f:
|
102 |
+
return json.load(f)
|
103 |
+
|
104 |
+
|
105 |
+
def write_json(text, path):
|
106 |
+
with open(path, "w") as f:
|
107 |
+
json.dump(text, f)
|
108 |
+
|
109 |
+
|
110 |
+
def write_model(
|
111 |
+
model_path,
|
112 |
+
input_base_path,
|
113 |
+
model_size=None,
|
114 |
+
safe_serialization=True,
|
115 |
+
llama_version="1",
|
116 |
+
vocab_size=None,
|
117 |
+
num_shards=None,
|
118 |
+
instruct=False,
|
119 |
+
):
|
120 |
+
os.makedirs(model_path, exist_ok=True)
|
121 |
+
tmp_model_path = os.path.join(model_path, "tmp")
|
122 |
+
os.makedirs(tmp_model_path, exist_ok=True)
|
123 |
+
|
124 |
+
params = read_json(os.path.join(input_base_path, "params.json"))
|
125 |
+
num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards
|
126 |
+
params = params.get("model", params)
|
127 |
+
n_layers = params["n_layers"]
|
128 |
+
n_heads = params["n_heads"]
|
129 |
+
n_heads_per_shard = n_heads // num_shards
|
130 |
+
dim = params["dim"]
|
131 |
+
dims_per_head = dim // n_heads
|
132 |
+
base = params.get("rope_theta", 10000.0)
|
133 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
134 |
+
if base > 10000.0 and float(llama_version) < 3:
|
135 |
+
max_position_embeddings = 16384
|
136 |
+
else:
|
137 |
+
max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]
|
138 |
+
|
139 |
+
if params.get("n_kv_heads", None) is not None:
|
140 |
+
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
|
141 |
+
num_key_value_heads_per_shard = num_key_value_heads // num_shards
|
142 |
+
key_value_dim = dims_per_head * num_key_value_heads
|
143 |
+
else: # compatibility with other checkpoints
|
144 |
+
num_key_value_heads = n_heads
|
145 |
+
num_key_value_heads_per_shard = n_heads_per_shard
|
146 |
+
key_value_dim = dim
|
147 |
+
|
148 |
+
# permute for sliced rotary
|
149 |
+
def permute(w, n_heads, dim1=dim, dim2=dim):
|
150 |
+
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
|
151 |
+
|
152 |
+
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
|
153 |
+
# Load weights
|
154 |
+
if num_shards == 1:
|
155 |
+
# Not sharded
|
156 |
+
# (The sharded implementation would also work, but this is simpler.)
|
157 |
+
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
158 |
+
else:
|
159 |
+
# Sharded
|
160 |
+
checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
|
161 |
+
print("Loading in order:", checkpoint_list)
|
162 |
+
loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
|
163 |
+
param_count = 0
|
164 |
+
index_dict = {"weight_map": {}}
|
165 |
+
for layer_i in range(n_layers):
|
166 |
+
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
|
167 |
+
if num_shards == 1:
|
168 |
+
# Unsharded
|
169 |
+
state_dict = {
|
170 |
+
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
171 |
+
loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads
|
172 |
+
),
|
173 |
+
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
174 |
+
loaded[f"layers.{layer_i}.attention.wk.weight"],
|
175 |
+
n_heads=num_key_value_heads,
|
176 |
+
dim1=key_value_dim,
|
177 |
+
),
|
178 |
+
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
|
179 |
+
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
|
180 |
+
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
|
181 |
+
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
|
182 |
+
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
|
183 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
|
184 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
|
185 |
+
}
|
186 |
+
else:
|
187 |
+
# Sharded
|
188 |
+
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
|
189 |
+
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
|
190 |
+
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
|
191 |
+
|
192 |
+
state_dict = {
|
193 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
|
194 |
+
f"layers.{layer_i}.attention_norm.weight"
|
195 |
+
].clone(),
|
196 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
|
197 |
+
f"layers.{layer_i}.ffn_norm.weight"
|
198 |
+
].clone(),
|
199 |
+
}
|
200 |
+
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
|
201 |
+
torch.cat(
|
202 |
+
[
|
203 |
+
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
204 |
+
for i in range(len(loaded))
|
205 |
+
],
|
206 |
+
dim=0,
|
207 |
+
).reshape(dim, dim),
|
208 |
+
n_heads=n_heads,
|
209 |
+
)
|
210 |
+
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
211 |
+
torch.cat(
|
212 |
+
[
|
213 |
+
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
|
214 |
+
num_key_value_heads_per_shard, dims_per_head, dim
|
215 |
+
)
|
216 |
+
for i in range(len(loaded))
|
217 |
+
],
|
218 |
+
dim=0,
|
219 |
+
).reshape(key_value_dim, dim),
|
220 |
+
num_key_value_heads,
|
221 |
+
key_value_dim,
|
222 |
+
dim,
|
223 |
+
)
|
224 |
+
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
|
225 |
+
[
|
226 |
+
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
|
227 |
+
num_key_value_heads_per_shard, dims_per_head, dim
|
228 |
+
)
|
229 |
+
for i in range(len(loaded))
|
230 |
+
],
|
231 |
+
dim=0,
|
232 |
+
).reshape(key_value_dim, dim)
|
233 |
+
|
234 |
+
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
|
235 |
+
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1
|
236 |
+
)
|
237 |
+
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
|
238 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0
|
239 |
+
)
|
240 |
+
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
|
241 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1
|
242 |
+
)
|
243 |
+
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
|
244 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0
|
245 |
+
)
|
246 |
+
|
247 |
+
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
248 |
+
for k, v in state_dict.items():
|
249 |
+
index_dict["weight_map"][k] = filename
|
250 |
+
param_count += v.numel()
|
251 |
+
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
252 |
+
|
253 |
+
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
|
254 |
+
if num_shards == 1:
|
255 |
+
# Unsharded
|
256 |
+
state_dict = {
|
257 |
+
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
|
258 |
+
"model.norm.weight": loaded["norm.weight"],
|
259 |
+
"lm_head.weight": loaded["output.weight"],
|
260 |
+
}
|
261 |
+
else:
|
262 |
+
concat_dim = 0 if llama_version in ["3", "3.1"] else 1
|
263 |
+
state_dict = {
|
264 |
+
"model.norm.weight": loaded[0]["norm.weight"],
|
265 |
+
"model.embed_tokens.weight": torch.cat(
|
266 |
+
[loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim
|
267 |
+
),
|
268 |
+
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0),
|
269 |
+
}
|
270 |
+
|
271 |
+
for k, v in state_dict.items():
|
272 |
+
index_dict["weight_map"][k] = filename
|
273 |
+
param_count += v.numel()
|
274 |
+
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
275 |
+
|
276 |
+
# Write configs
|
277 |
+
index_dict["metadata"] = {"total_size": param_count * 2}
|
278 |
+
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
|
279 |
+
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
|
280 |
+
multiple_of = params["multiple_of"] if "multiple_of" in params else 256
|
281 |
+
|
282 |
+
if llama_version in ["3", "3.1"]:
|
283 |
+
bos_token_id = 128000
|
284 |
+
|
285 |
+
if instruct:
|
286 |
+
eos_token_id = [128001, 128008, 128009]
|
287 |
+
else:
|
288 |
+
eos_token_id = 128001
|
289 |
+
else:
|
290 |
+
bos_token_id = 1
|
291 |
+
eos_token_id = 2
|
292 |
+
|
293 |
+
config = LlamaConfig(
|
294 |
+
hidden_size=dim,
|
295 |
+
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
|
296 |
+
num_attention_heads=params["n_heads"],
|
297 |
+
num_hidden_layers=params["n_layers"],
|
298 |
+
rms_norm_eps=params["norm_eps"],
|
299 |
+
num_key_value_heads=num_key_value_heads,
|
300 |
+
vocab_size=vocab_size,
|
301 |
+
rope_theta=base,
|
302 |
+
max_position_embeddings=max_position_embeddings,
|
303 |
+
bos_token_id=bos_token_id,
|
304 |
+
eos_token_id=eos_token_id,
|
305 |
+
)
|
306 |
+
config.save_pretrained(tmp_model_path)
|
307 |
+
|
308 |
+
if instruct:
|
309 |
+
generation_config = GenerationConfig(
|
310 |
+
do_sample=True,
|
311 |
+
temperature=0.6,
|
312 |
+
top_p=0.9,
|
313 |
+
bos_token_id=bos_token_id,
|
314 |
+
eos_token_id=eos_token_id,
|
315 |
+
)
|
316 |
+
generation_config.save_pretrained(tmp_model_path)
|
317 |
+
|
318 |
+
# Make space so we can load the model properly now.
|
319 |
+
del state_dict
|
320 |
+
del loaded
|
321 |
+
gc.collect()
|
322 |
+
|
323 |
+
print("Loading the checkpoint in a Llama model.")
|
324 |
+
model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
|
325 |
+
# Avoid saving this as part of the config.
|
326 |
+
del model.config._name_or_path
|
327 |
+
model.config.torch_dtype = torch.float16
|
328 |
+
print("Saving in the Transformers format.")
|
329 |
+
model.save_pretrained(model_path, safe_serialization=safe_serialization)
|
330 |
+
shutil.rmtree(tmp_model_path, ignore_errors=True)
|
331 |
+
|
332 |
+
|
333 |
+
class Llama3Converter(TikTokenConverter):
|
334 |
+
def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs):
|
335 |
+
super().__init__(vocab_file, **kwargs)
|
336 |
+
tokenizer = self.converted()
|
337 |
+
chat_template = (
|
338 |
+
"{% set loop_messages = messages %}"
|
339 |
+
"{% for message in loop_messages %}"
|
340 |
+
"{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}"
|
341 |
+
"{% if loop.index0 == 0 %}"
|
342 |
+
"{% set content = bos_token + content %}"
|
343 |
+
"{% endif %}"
|
344 |
+
"{{ content }}"
|
345 |
+
"{% endfor %}"
|
346 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
|
347 |
+
)
|
348 |
+
tokenizer.add_special_tokens(special_tokens)
|
349 |
+
|
350 |
+
self.tokenizer = PreTrainedTokenizerFast(
|
351 |
+
tokenizer_object=tokenizer,
|
352 |
+
bos_token="<|begin_of_text|>",
|
353 |
+
eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
|
354 |
+
chat_template=chat_template if instruct else None,
|
355 |
+
model_input_names=["input_ids", "attention_mask"],
|
356 |
+
model_max_length=model_max_length,
|
357 |
+
)
|
358 |
+
|
359 |
+
|
360 |
+
def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False):
|
361 |
+
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
|
362 |
+
if llama_version in ["3", "3.1"]:
|
363 |
+
tokenizer = Llama3Converter(
|
364 |
+
input_tokenizer_path, special_tokens, instruct, model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version]
|
365 |
+
).tokenizer
|
366 |
+
else:
|
367 |
+
tokenizer = tokenizer_class(input_tokenizer_path)
|
368 |
+
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
|
369 |
+
tokenizer.save_pretrained(tokenizer_path)
|
370 |
+
return tokenizer
|
371 |
+
|
372 |
+
|
373 |
+
DEFAULT_LLAMA_SPECIAL_TOKENS = {
|
374 |
+
"3": [
|
375 |
+
"<|begin_of_text|>",
|
376 |
+
"<|end_of_text|>",
|
377 |
+
"<|reserved_special_token_0|>",
|
378 |
+
"<|reserved_special_token_1|>",
|
379 |
+
"<|reserved_special_token_2|>",
|
380 |
+
"<|reserved_special_token_3|>",
|
381 |
+
"<|start_header_id|>",
|
382 |
+
"<|end_header_id|>",
|
383 |
+
"<|reserved_special_token_4|>",
|
384 |
+
"<|eot_id|>", # end of turn
|
385 |
+
]
|
386 |
+
+ [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
|
387 |
+
"3.1": [
|
388 |
+
"<|begin_of_text|>",
|
389 |
+
"<|end_of_text|>",
|
390 |
+
"<|reserved_special_token_0|>",
|
391 |
+
"<|reserved_special_token_1|>",
|
392 |
+
"<|finetune_right_pad_id|>",
|
393 |
+
"<|reserved_special_token_2|>",
|
394 |
+
"<|start_header_id|>",
|
395 |
+
"<|end_header_id|>",
|
396 |
+
"<|eom_id|>", # end of message
|
397 |
+
"<|eot_id|>", # end of turn
|
398 |
+
"<|python_tag|>",
|
399 |
+
]
|
400 |
+
+ [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
|
401 |
+
}
|
402 |
+
|
403 |
+
|
404 |
+
def main():
|
405 |
+
parser = argparse.ArgumentParser()
|
406 |
+
parser.add_argument(
|
407 |
+
"--input_dir",
|
408 |
+
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
|
409 |
+
)
|
410 |
+
parser.add_argument(
|
411 |
+
"--model_size",
|
412 |
+
default=None,
|
413 |
+
help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Llama2 official release. For more details on Llama2, checkout the original repo: https://huggingface.co/meta-llama",
|
414 |
+
)
|
415 |
+
parser.add_argument(
|
416 |
+
"--output_dir",
|
417 |
+
help="Location to write HF model and tokenizer",
|
418 |
+
)
|
419 |
+
parser.add_argument(
|
420 |
+
"--safe_serialization", default=True, type=bool, help="Whether or not to save using `safetensors`."
|
421 |
+
)
|
422 |
+
# Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
|
423 |
+
parser.add_argument(
|
424 |
+
"--llama_version",
|
425 |
+
choices=["1", "2", "3", "3.1"],
|
426 |
+
default="1",
|
427 |
+
type=str,
|
428 |
+
help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
|
429 |
+
)
|
430 |
+
parser.add_argument(
|
431 |
+
"--num_shards",
|
432 |
+
default=None,
|
433 |
+
type=int,
|
434 |
+
help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
|
435 |
+
)
|
436 |
+
parser.add_argument(
|
437 |
+
"--special_tokens",
|
438 |
+
default=None,
|
439 |
+
type=List[str],
|
440 |
+
help="The list of special tokens that should be added to the model.",
|
441 |
+
)
|
442 |
+
parser.add_argument(
|
443 |
+
"--instruct",
|
444 |
+
default=False,
|
445 |
+
type=bool,
|
446 |
+
help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.",
|
447 |
+
)
|
448 |
+
args = parser.parse_args()
|
449 |
+
if args.model_size is None and args.num_shards is None:
|
450 |
+
raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
|
451 |
+
if args.special_tokens is None:
|
452 |
+
# no special tokens by default
|
453 |
+
args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS.get(str(args.llama_version), [])
|
454 |
+
|
455 |
+
spm_path = os.path.join(args.input_dir, "tokenizer.model")
|
456 |
+
vocab_size = len(
|
457 |
+
write_tokenizer(
|
458 |
+
args.output_dir,
|
459 |
+
spm_path,
|
460 |
+
llama_version=args.llama_version,
|
461 |
+
special_tokens=args.special_tokens,
|
462 |
+
instruct=args.instruct,
|
463 |
+
)
|
464 |
+
)
|
465 |
+
if args.model_size != "tokenizer_only":
|
466 |
+
write_model(
|
467 |
+
model_path=args.output_dir,
|
468 |
+
input_base_path=args.input_dir,
|
469 |
+
model_size=args.model_size,
|
470 |
+
safe_serialization=args.safe_serialization,
|
471 |
+
llama_version=args.llama_version,
|
472 |
+
vocab_size=vocab_size,
|
473 |
+
num_shards=args.num_shards,
|
474 |
+
instruct=args.instruct,
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
if __name__ == "__main__":
|
479 |
+
main()
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
128001,
|
6 |
+
128008,
|
7 |
+
128009
|
8 |
+
],
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_p": 0.9,
|
11 |
+
"transformers_version": "4.42.3"
|
12 |
+
}
|
hf.ipynb
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"metadata": {
|
5 |
+
"ExecuteTime": {
|
6 |
+
"end_time": "2024-08-19T11:57:54.027556Z",
|
7 |
+
"start_time": "2024-08-19T11:57:53.562034Z"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"cell_type": "code",
|
11 |
+
"source": "import torch",
|
12 |
+
"id": "6bc8a1947732eb39",
|
13 |
+
"outputs": [],
|
14 |
+
"execution_count": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"id": "initial_id",
|
19 |
+
"metadata": {
|
20 |
+
"collapsed": true,
|
21 |
+
"ExecuteTime": {
|
22 |
+
"end_time": "2024-08-19T12:13:56.447339Z",
|
23 |
+
"start_time": "2024-08-19T12:13:55.877057Z"
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"source": [
|
27 |
+
"import torch\n",
|
28 |
+
"from transformers import LlamaForCausalLM, LlamaTokenizer\n",
|
29 |
+
"\n",
|
30 |
+
"\n",
|
31 |
+
"\n",
|
32 |
+
"# Convert to Hugging Face format\n",
|
33 |
+
"model = LlamaForCausalLM.from_pretrained(\"meta-llama/Meta-Llama-3.1-8B-Instruct\")\n",
|
34 |
+
"\n"
|
35 |
+
],
|
36 |
+
"outputs": [
|
37 |
+
{
|
38 |
+
"ename": "OSError",
|
39 |
+
"evalue": "We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like meta-llama/Meta-Llama-3.1-8B-Instruct is not the path to a directory containing a file named config.json.\nCheckout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.",
|
40 |
+
"output_type": "error",
|
41 |
+
"traceback": [
|
42 |
+
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
|
43 |
+
"\u001B[0;31mHTTPError\u001B[0m Traceback (most recent call last)",
|
44 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/utils/_errors.py:304\u001B[0m, in \u001B[0;36mhf_raise_for_status\u001B[0;34m(response, endpoint_name)\u001B[0m\n\u001B[1;32m 303\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m--> 304\u001B[0m \u001B[43mresponse\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mraise_for_status\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 305\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m HTTPError \u001B[38;5;28;01mas\u001B[39;00m e:\n",
|
45 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/requests/models.py:1024\u001B[0m, in \u001B[0;36mResponse.raise_for_status\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 1023\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m http_error_msg:\n\u001B[0;32m-> 1024\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m HTTPError(http_error_msg, response\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m)\n",
|
46 |
+
"\u001B[0;31mHTTPError\u001B[0m: 403 Client Error: Forbidden for url: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct/resolve/main/config.json",
|
47 |
+
"\nThe above exception was the direct cause of the following exception:\n",
|
48 |
+
"\u001B[0;31mHfHubHTTPError\u001B[0m Traceback (most recent call last)",
|
49 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/file_download.py:1751\u001B[0m, in \u001B[0;36m_get_metadata_or_catch_error\u001B[0;34m(repo_id, filename, repo_type, revision, endpoint, proxies, etag_timeout, headers, token, local_files_only, relative_filename, storage_folder)\u001B[0m\n\u001B[1;32m 1750\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m-> 1751\u001B[0m metadata \u001B[38;5;241m=\u001B[39m \u001B[43mget_hf_file_metadata\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1752\u001B[0m \u001B[43m \u001B[49m\u001B[43murl\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43murl\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mproxies\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mproxies\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mtimeout\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43metag_timeout\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mtoken\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtoken\u001B[49m\n\u001B[1;32m 1753\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1754\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m EntryNotFoundError \u001B[38;5;28;01mas\u001B[39;00m http_error:\n",
|
50 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py:114\u001B[0m, in \u001B[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 112\u001B[0m kwargs \u001B[38;5;241m=\u001B[39m smoothly_deprecate_use_auth_token(fn_name\u001B[38;5;241m=\u001B[39mfn\u001B[38;5;241m.\u001B[39m\u001B[38;5;18m__name__\u001B[39m, has_token\u001B[38;5;241m=\u001B[39mhas_token, kwargs\u001B[38;5;241m=\u001B[39mkwargs)\n\u001B[0;32m--> 114\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfn\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
|
51 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/file_download.py:1673\u001B[0m, in \u001B[0;36mget_hf_file_metadata\u001B[0;34m(url, token, proxies, timeout, library_name, library_version, user_agent, headers)\u001B[0m\n\u001B[1;32m 1672\u001B[0m \u001B[38;5;66;03m# Retrieve metadata\u001B[39;00m\n\u001B[0;32m-> 1673\u001B[0m r \u001B[38;5;241m=\u001B[39m \u001B[43m_request_wrapper\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1674\u001B[0m \u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mHEAD\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1675\u001B[0m \u001B[43m \u001B[49m\u001B[43murl\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43murl\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1676\u001B[0m \u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1677\u001B[0m \u001B[43m \u001B[49m\u001B[43mallow_redirects\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1678\u001B[0m \u001B[43m \u001B[49m\u001B[43mfollow_relative_redirects\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mTrue\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1679\u001B[0m \u001B[43m \u001B[49m\u001B[43mproxies\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mproxies\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1680\u001B[0m \u001B[43m \u001B[49m\u001B[43mtimeout\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtimeout\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1681\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1682\u001B[0m hf_raise_for_status(r)\n",
|
52 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/file_download.py:376\u001B[0m, in \u001B[0;36m_request_wrapper\u001B[0;34m(method, url, follow_relative_redirects, **params)\u001B[0m\n\u001B[1;32m 375\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m follow_relative_redirects:\n\u001B[0;32m--> 376\u001B[0m response \u001B[38;5;241m=\u001B[39m \u001B[43m_request_wrapper\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 377\u001B[0m \u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 378\u001B[0m \u001B[43m \u001B[49m\u001B[43murl\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43murl\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 379\u001B[0m \u001B[43m \u001B[49m\u001B[43mfollow_relative_redirects\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 380\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mparams\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 381\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 383\u001B[0m \u001B[38;5;66;03m# If redirection, we redirect only relative paths.\u001B[39;00m\n\u001B[1;32m 384\u001B[0m \u001B[38;5;66;03m# This is useful in case of a renamed repository.\u001B[39;00m\n",
|
53 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/file_download.py:400\u001B[0m, in \u001B[0;36m_request_wrapper\u001B[0;34m(method, url, follow_relative_redirects, **params)\u001B[0m\n\u001B[1;32m 399\u001B[0m response \u001B[38;5;241m=\u001B[39m get_session()\u001B[38;5;241m.\u001B[39mrequest(method\u001B[38;5;241m=\u001B[39mmethod, url\u001B[38;5;241m=\u001B[39murl, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mparams)\n\u001B[0;32m--> 400\u001B[0m \u001B[43mhf_raise_for_status\u001B[49m\u001B[43m(\u001B[49m\u001B[43mresponse\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 401\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m response\n",
|
54 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/utils/_errors.py:367\u001B[0m, in \u001B[0;36mhf_raise_for_status\u001B[0;34m(response, endpoint_name)\u001B[0m\n\u001B[1;32m 361\u001B[0m message \u001B[38;5;241m=\u001B[39m (\n\u001B[1;32m 362\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;130;01m\\n\u001B[39;00m\u001B[38;5;130;01m\\n\u001B[39;00m\u001B[38;5;132;01m{\u001B[39;00mresponse\u001B[38;5;241m.\u001B[39mstatus_code\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m Forbidden: \u001B[39m\u001B[38;5;132;01m{\u001B[39;00merror_message\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 363\u001B[0m \u001B[38;5;241m+\u001B[39m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;130;01m\\n\u001B[39;00m\u001B[38;5;124mCannot access content at: \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mresponse\u001B[38;5;241m.\u001B[39murl\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 364\u001B[0m \u001B[38;5;241m+\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;130;01m\\n\u001B[39;00m\u001B[38;5;124mIf you are trying to create or update content, \u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 365\u001B[0m \u001B[38;5;241m+\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmake sure you have a token with the `write` role.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 366\u001B[0m )\n\u001B[0;32m--> 367\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m HfHubHTTPError(message, response\u001B[38;5;241m=\u001B[39mresponse) \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01me\u001B[39;00m\n\u001B[1;32m 369\u001B[0m \u001B[38;5;66;03m# Convert `HTTPError` into a `HfHubHTTPError` to display request information\u001B[39;00m\n\u001B[1;32m 370\u001B[0m \u001B[38;5;66;03m# as well (request id and/or server error message)\u001B[39;00m\n",
|
55 |
+
"\u001B[0;31mHfHubHTTPError\u001B[0m: (Request ID: Root=1-66c33704-25003f0c7610b2264ab62e19;5e36fb78-183e-4e8d-9fbb-9ae6d61f9bad)\n\n403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository..\nCannot access content at: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct/resolve/main/config.json.\nIf you are trying to create or update content, make sure you have a token with the `write` role.",
|
56 |
+
"\nThe above exception was the direct cause of the following exception:\n",
|
57 |
+
"\u001B[0;31mLocalEntryNotFoundError\u001B[0m Traceback (most recent call last)",
|
58 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/transformers/utils/hub.py:402\u001B[0m, in \u001B[0;36mcached_file\u001B[0;34m(path_or_repo_id, filename, cache_dir, force_download, resume_download, proxies, token, revision, local_files_only, subfolder, repo_type, user_agent, _raise_exceptions_for_gated_repo, _raise_exceptions_for_missing_entries, _raise_exceptions_for_connection_errors, _commit_hash, **deprecated_kwargs)\u001B[0m\n\u001B[1;32m 400\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 401\u001B[0m \u001B[38;5;66;03m# Load from URL or cache if already cached\u001B[39;00m\n\u001B[0;32m--> 402\u001B[0m resolved_file \u001B[38;5;241m=\u001B[39m \u001B[43mhf_hub_download\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 403\u001B[0m \u001B[43m \u001B[49m\u001B[43mpath_or_repo_id\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 404\u001B[0m \u001B[43m \u001B[49m\u001B[43mfilename\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 405\u001B[0m \u001B[43m \u001B[49m\u001B[43msubfolder\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mNone\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mif\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[38;5;28;43mlen\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43msubfolder\u001B[49m\u001B[43m)\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m==\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;241;43m0\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01melse\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43msubfolder\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 406\u001B[0m \u001B[43m \u001B[49m\u001B[43mrepo_type\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrepo_type\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 407\u001B[0m \u001B[43m \u001B[49m\u001B[43mrevision\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrevision\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 408\u001B[0m \u001B[43m \u001B[49m\u001B[43mcache_dir\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcache_dir\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 409\u001B[0m \u001B[43m \u001B[49m\u001B[43muser_agent\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43muser_agent\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 410\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_download\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mforce_download\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 411\u001B[0m \u001B[43m \u001B[49m\u001B[43mproxies\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mproxies\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 412\u001B[0m \u001B[43m \u001B[49m\u001B[43mresume_download\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mresume_download\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 413\u001B[0m \u001B[43m \u001B[49m\u001B[43mtoken\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtoken\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 414\u001B[0m \u001B[43m \u001B[49m\u001B[43mlocal_files_only\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mlocal_files_only\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 415\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 416\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m GatedRepoError \u001B[38;5;28;01mas\u001B[39;00m e:\n",
|
59 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/utils/_deprecation.py:101\u001B[0m, in \u001B[0;36m_deprecate_arguments.<locals>._inner_deprecate_positional_args.<locals>.inner_f\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 100\u001B[0m warnings\u001B[38;5;241m.\u001B[39mwarn(message, \u001B[38;5;167;01mFutureWarning\u001B[39;00m)\n\u001B[0;32m--> 101\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mf\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
|
60 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py:114\u001B[0m, in \u001B[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 112\u001B[0m kwargs \u001B[38;5;241m=\u001B[39m smoothly_deprecate_use_auth_token(fn_name\u001B[38;5;241m=\u001B[39mfn\u001B[38;5;241m.\u001B[39m\u001B[38;5;18m__name__\u001B[39m, has_token\u001B[38;5;241m=\u001B[39mhas_token, kwargs\u001B[38;5;241m=\u001B[39mkwargs)\n\u001B[0;32m--> 114\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfn\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
|
61 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/file_download.py:1240\u001B[0m, in \u001B[0;36mhf_hub_download\u001B[0;34m(repo_id, filename, subfolder, repo_type, revision, library_name, library_version, cache_dir, local_dir, user_agent, force_download, proxies, etag_timeout, token, local_files_only, headers, endpoint, legacy_cache_layout, resume_download, force_filename, local_dir_use_symlinks)\u001B[0m\n\u001B[1;32m 1239\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m-> 1240\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43m_hf_hub_download_to_cache_dir\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1241\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;66;43;03m# Destination\u001B[39;49;00m\n\u001B[1;32m 1242\u001B[0m \u001B[43m \u001B[49m\u001B[43mcache_dir\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcache_dir\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1243\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;66;43;03m# File info\u001B[39;49;00m\n\u001B[1;32m 1244\u001B[0m \u001B[43m \u001B[49m\u001B[43mrepo_id\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrepo_id\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1245\u001B[0m \u001B[43m \u001B[49m\u001B[43mfilename\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mfilename\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1246\u001B[0m \u001B[43m \u001B[49m\u001B[43mrepo_type\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrepo_type\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1247\u001B[0m \u001B[43m \u001B[49m\u001B[43mrevision\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrevision\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1248\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;66;43;03m# HTTP info\u001B[39;49;00m\n\u001B[1;32m 1249\u001B[0m \u001B[43m \u001B[49m\u001B[43mendpoint\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mendpoint\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1250\u001B[0m \u001B[43m \u001B[49m\u001B[43metag_timeout\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43metag_timeout\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1251\u001B[0m \u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1252\u001B[0m \u001B[43m \u001B[49m\u001B[43mproxies\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mproxies\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1253\u001B[0m \u001B[43m \u001B[49m\u001B[43mtoken\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtoken\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1254\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;66;43;03m# Additional options\u001B[39;49;00m\n\u001B[1;32m 1255\u001B[0m \u001B[43m \u001B[49m\u001B[43mlocal_files_only\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mlocal_files_only\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1256\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_download\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mforce_download\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1257\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n",
|
62 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/file_download.py:1347\u001B[0m, in \u001B[0;36m_hf_hub_download_to_cache_dir\u001B[0;34m(cache_dir, repo_id, filename, repo_type, revision, endpoint, etag_timeout, headers, proxies, token, local_files_only, force_download)\u001B[0m\n\u001B[1;32m 1346\u001B[0m \u001B[38;5;66;03m# Otherwise, raise appropriate error\u001B[39;00m\n\u001B[0;32m-> 1347\u001B[0m \u001B[43m_raise_on_head_call_error\u001B[49m\u001B[43m(\u001B[49m\u001B[43mhead_call_error\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mforce_download\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mlocal_files_only\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1349\u001B[0m \u001B[38;5;66;03m# From now on, etag, commit_hash, url and size are not None.\u001B[39;00m\n",
|
63 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/huggingface_hub/file_download.py:1857\u001B[0m, in \u001B[0;36m_raise_on_head_call_error\u001B[0;34m(head_call_error, force_download, local_files_only)\u001B[0m\n\u001B[1;32m 1855\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1856\u001B[0m \u001B[38;5;66;03m# Otherwise: most likely a connection issue or Hub downtime => let's warn the user\u001B[39;00m\n\u001B[0;32m-> 1857\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m LocalEntryNotFoundError(\n\u001B[1;32m 1858\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mAn error happened while trying to locate the file on the Hub and we cannot find the requested files\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1859\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m in the local cache. Please check your connection and try again or make sure your Internet connection\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1860\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m is on.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1861\u001B[0m ) \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mhead_call_error\u001B[39;00m\n",
|
64 |
+
"\u001B[0;31mLocalEntryNotFoundError\u001B[0m: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on.",
|
65 |
+
"\nThe above exception was the direct cause of the following exception:\n",
|
66 |
+
"\u001B[0;31mOSError\u001B[0m Traceback (most recent call last)",
|
67 |
+
"Cell \u001B[0;32mIn[4], line 7\u001B[0m\n\u001B[1;32m 2\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mtransformers\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m LlamaForCausalLM, LlamaTokenizer\n\u001B[1;32m 6\u001B[0m \u001B[38;5;66;03m# Convert to Hugging Face format\u001B[39;00m\n\u001B[0;32m----> 7\u001B[0m model \u001B[38;5;241m=\u001B[39m \u001B[43mLlamaForCausalLM\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfrom_pretrained\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mmeta-llama/Meta-Llama-3.1-8B-Instruct\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\n",
|
68 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/transformers/modeling_utils.py:3332\u001B[0m, in \u001B[0;36mPreTrainedModel.from_pretrained\u001B[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)\u001B[0m\n\u001B[1;32m 3330\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(config, PretrainedConfig):\n\u001B[1;32m 3331\u001B[0m config_path \u001B[38;5;241m=\u001B[39m config \u001B[38;5;28;01mif\u001B[39;00m config \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m \u001B[38;5;28;01melse\u001B[39;00m pretrained_model_name_or_path\n\u001B[0;32m-> 3332\u001B[0m config, model_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mcls\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconfig_class\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfrom_pretrained\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 3333\u001B[0m \u001B[43m \u001B[49m\u001B[43mconfig_path\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3334\u001B[0m \u001B[43m \u001B[49m\u001B[43mcache_dir\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcache_dir\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3335\u001B[0m \u001B[43m \u001B[49m\u001B[43mreturn_unused_kwargs\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mTrue\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 3336\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_download\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mforce_download\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3337\u001B[0m \u001B[43m \u001B[49m\u001B[43mresume_download\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mresume_download\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3338\u001B[0m \u001B[43m \u001B[49m\u001B[43mproxies\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mproxies\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3339\u001B[0m \u001B[43m \u001B[49m\u001B[43mlocal_files_only\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mlocal_files_only\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3340\u001B[0m \u001B[43m \u001B[49m\u001B[43mtoken\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtoken\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3341\u001B[0m \u001B[43m \u001B[49m\u001B[43mrevision\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrevision\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3342\u001B[0m \u001B[43m \u001B[49m\u001B[43msubfolder\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43msubfolder\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3343\u001B[0m \u001B[43m \u001B[49m\u001B[43m_from_auto\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mfrom_auto_class\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3344\u001B[0m \u001B[43m \u001B[49m\u001B[43m_from_pipeline\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mfrom_pipeline\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3345\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 3346\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 3347\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 3348\u001B[0m \u001B[38;5;66;03m# In case one passes a config to `from_pretrained` + \"attn_implementation\"\u001B[39;00m\n\u001B[1;32m 3349\u001B[0m \u001B[38;5;66;03m# override the `_attn_implementation` attribute to `attn_implementation` of the kwargs\u001B[39;00m\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 3353\u001B[0m \u001B[38;5;66;03m# we pop attn_implementation from the kwargs but this handles the case where users\u001B[39;00m\n\u001B[1;32m 3354\u001B[0m \u001B[38;5;66;03m# passes manually the config to `from_pretrained`.\u001B[39;00m\n\u001B[1;32m 3355\u001B[0m config \u001B[38;5;241m=\u001B[39m copy\u001B[38;5;241m.\u001B[39mdeepcopy(config)\n",
|
69 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/transformers/configuration_utils.py:603\u001B[0m, in \u001B[0;36mPretrainedConfig.from_pretrained\u001B[0;34m(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, **kwargs)\u001B[0m\n\u001B[1;32m 599\u001B[0m kwargs[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mrevision\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m revision\n\u001B[1;32m 601\u001B[0m \u001B[38;5;28mcls\u001B[39m\u001B[38;5;241m.\u001B[39m_set_token_in_kwargs(kwargs, token)\n\u001B[0;32m--> 603\u001B[0m config_dict, kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mcls\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mget_config_dict\u001B[49m\u001B[43m(\u001B[49m\u001B[43mpretrained_model_name_or_path\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 604\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmodel_type\u001B[39m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;129;01min\u001B[39;00m config_dict \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28mhasattr\u001B[39m(\u001B[38;5;28mcls\u001B[39m, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmodel_type\u001B[39m\u001B[38;5;124m\"\u001B[39m) \u001B[38;5;129;01mand\u001B[39;00m config_dict[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmodel_type\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m!=\u001B[39m \u001B[38;5;28mcls\u001B[39m\u001B[38;5;241m.\u001B[39mmodel_type:\n\u001B[1;32m 605\u001B[0m logger\u001B[38;5;241m.\u001B[39mwarning(\n\u001B[1;32m 606\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mYou are using a model of type \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mconfig_dict[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mmodel_type\u001B[39m\u001B[38;5;124m'\u001B[39m]\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m to instantiate a model of type \u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 607\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;132;01m{\u001B[39;00m\u001B[38;5;28mcls\u001B[39m\u001B[38;5;241m.\u001B[39mmodel_type\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m. This is not supported for all configurations of models and can yield errors.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 608\u001B[0m )\n",
|
70 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/transformers/configuration_utils.py:632\u001B[0m, in \u001B[0;36mPretrainedConfig.get_config_dict\u001B[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001B[0m\n\u001B[1;32m 630\u001B[0m original_kwargs \u001B[38;5;241m=\u001B[39m copy\u001B[38;5;241m.\u001B[39mdeepcopy(kwargs)\n\u001B[1;32m 631\u001B[0m \u001B[38;5;66;03m# Get config dict associated with the base config file\u001B[39;00m\n\u001B[0;32m--> 632\u001B[0m config_dict, kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mcls\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_get_config_dict\u001B[49m\u001B[43m(\u001B[49m\u001B[43mpretrained_model_name_or_path\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 633\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m_commit_hash\u001B[39m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;129;01min\u001B[39;00m config_dict:\n\u001B[1;32m 634\u001B[0m original_kwargs[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m_commit_hash\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m config_dict[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m_commit_hash\u001B[39m\u001B[38;5;124m\"\u001B[39m]\n",
|
71 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/transformers/configuration_utils.py:689\u001B[0m, in \u001B[0;36mPretrainedConfig._get_config_dict\u001B[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001B[0m\n\u001B[1;32m 685\u001B[0m configuration_file \u001B[38;5;241m=\u001B[39m kwargs\u001B[38;5;241m.\u001B[39mpop(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m_configuration_file\u001B[39m\u001B[38;5;124m\"\u001B[39m, CONFIG_NAME) \u001B[38;5;28;01mif\u001B[39;00m gguf_file \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m \u001B[38;5;28;01melse\u001B[39;00m gguf_file\n\u001B[1;32m 687\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 688\u001B[0m \u001B[38;5;66;03m# Load from local folder or from cache or download from model Hub and cache\u001B[39;00m\n\u001B[0;32m--> 689\u001B[0m resolved_config_file \u001B[38;5;241m=\u001B[39m \u001B[43mcached_file\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 690\u001B[0m \u001B[43m \u001B[49m\u001B[43mpretrained_model_name_or_path\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 691\u001B[0m \u001B[43m \u001B[49m\u001B[43mconfiguration_file\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 692\u001B[0m \u001B[43m \u001B[49m\u001B[43mcache_dir\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcache_dir\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 693\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_download\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mforce_download\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 694\u001B[0m \u001B[43m \u001B[49m\u001B[43mproxies\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mproxies\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 695\u001B[0m \u001B[43m \u001B[49m\u001B[43mresume_download\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mresume_download\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 696\u001B[0m \u001B[43m \u001B[49m\u001B[43mlocal_files_only\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mlocal_files_only\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 697\u001B[0m \u001B[43m \u001B[49m\u001B[43mtoken\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtoken\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 698\u001B[0m \u001B[43m \u001B[49m\u001B[43muser_agent\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43muser_agent\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 699\u001B[0m \u001B[43m \u001B[49m\u001B[43mrevision\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrevision\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 700\u001B[0m \u001B[43m \u001B[49m\u001B[43msubfolder\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43msubfolder\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 701\u001B[0m \u001B[43m \u001B[49m\u001B[43m_commit_hash\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcommit_hash\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 702\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 703\u001B[0m commit_hash \u001B[38;5;241m=\u001B[39m extract_commit_hash(resolved_config_file, commit_hash)\n\u001B[1;32m 704\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mEnvironmentError\u001B[39;00m:\n\u001B[1;32m 705\u001B[0m \u001B[38;5;66;03m# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to\u001B[39;00m\n\u001B[1;32m 706\u001B[0m \u001B[38;5;66;03m# the original exception.\u001B[39;00m\n",
|
72 |
+
"File \u001B[0;32m~/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/lib/python3.12/site-packages/transformers/utils/hub.py:445\u001B[0m, in \u001B[0;36mcached_file\u001B[0;34m(path_or_repo_id, filename, cache_dir, force_download, resume_download, proxies, token, revision, local_files_only, subfolder, repo_type, user_agent, _raise_exceptions_for_gated_repo, _raise_exceptions_for_missing_entries, _raise_exceptions_for_connection_errors, _commit_hash, **deprecated_kwargs)\u001B[0m\n\u001B[1;32m 439\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m (\n\u001B[1;32m 440\u001B[0m resolved_file \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[1;32m 441\u001B[0m \u001B[38;5;129;01mor\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m _raise_exceptions_for_missing_entries\n\u001B[1;32m 442\u001B[0m \u001B[38;5;129;01mor\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m _raise_exceptions_for_connection_errors\n\u001B[1;32m 443\u001B[0m ):\n\u001B[1;32m 444\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m resolved_file\n\u001B[0;32m--> 445\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mEnvironmentError\u001B[39;00m(\n\u001B[1;32m 446\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mWe couldn\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mt connect to \u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;132;01m{\u001B[39;00mHUGGINGFACE_CO_RESOLVE_ENDPOINT\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m to load this file, couldn\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mt find it in the\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 447\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m cached files and it looks like \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mpath_or_repo_id\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m is not the path to a directory containing a file named\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 448\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mfull_filename\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m.\u001B[39m\u001B[38;5;130;01m\\n\u001B[39;00m\u001B[38;5;124mCheckout your internet connection or see how to run the library in offline mode at\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 449\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m \u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mhttps://huggingface.co/docs/transformers/installation#offline-mode\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 450\u001B[0m ) \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01me\u001B[39;00m\n\u001B[1;32m 451\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m EntryNotFoundError \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 452\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m _raise_exceptions_for_missing_entries:\n",
|
73 |
+
"\u001B[0;31mOSError\u001B[0m: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like meta-llama/Meta-Llama-3.1-8B-Instruct is not the path to a directory containing a file named config.json.\nCheckout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'."
|
74 |
+
]
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"execution_count": 4
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"metadata": {},
|
81 |
+
"cell_type": "code",
|
82 |
+
"outputs": [],
|
83 |
+
"execution_count": null,
|
84 |
+
"source": [
|
85 |
+
"# Load the original model weights\n",
|
86 |
+
"model_path = \"/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic\"\n",
|
87 |
+
"state_dict = torch.load(model_path)\n",
|
88 |
+
"model.load_state_dict(state_dict)"
|
89 |
+
],
|
90 |
+
"id": "928fc7a6456e125f"
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"metadata": {},
|
94 |
+
"cell_type": "code",
|
95 |
+
"outputs": [],
|
96 |
+
"execution_count": null,
|
97 |
+
"source": [
|
98 |
+
"model.save_pretrained(\"converted_llama_model\")\n",
|
99 |
+
"tokenizer = LlamaTokenizer.from_pretrained(\"path_to_llama_base_model\")\n",
|
100 |
+
"tokenizer.save_pretrained(\"converted_llama_model\")"
|
101 |
+
],
|
102 |
+
"id": "a972e598ca725beb"
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"metadata": {
|
106 |
+
"kernelspec": {
|
107 |
+
"display_name": "Python 3",
|
108 |
+
"language": "python",
|
109 |
+
"name": "python3"
|
110 |
+
},
|
111 |
+
"language_info": {
|
112 |
+
"codemirror_mode": {
|
113 |
+
"name": "ipython",
|
114 |
+
"version": 2
|
115 |
+
},
|
116 |
+
"file_extension": ".py",
|
117 |
+
"mimetype": "text/x-python",
|
118 |
+
"name": "python",
|
119 |
+
"nbconvert_exporter": "python",
|
120 |
+
"pygments_lexer": "ipython2",
|
121 |
+
"version": "2.7.6"
|
122 |
+
}
|
123 |
+
},
|
124 |
+
"nbformat": 4,
|
125 |
+
"nbformat_minor": 5
|
126 |
+
}
|
hf_model_0001_0-003.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47a9d897d0bf43f7df7e61bb986a363af07570a25eca816d54596dbed72d3df2
|
3 |
+
size 4976717492
|
hf_model_0002_0-002.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3524ed26320333b3e7e7babb60c8551e8267bbe3e1d729ae611e270513f91a18
|
3 |
+
size 4999826558
|
hf_model_0003_0-004.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da5a603e6649f891dafe1002c25b108302fae093f31dd15f8f9fdf7a98cd494b
|
3 |
+
size 4915939050
|
hf_model_0004_0.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cd0aa9b08e1c321875c9ae9ab1c2f7efe78cc82e0320d31fd9ca1c994c3a3c0
|
3 |
+
size 1168140820
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"weight_map": {"model.embed_tokens.weight": "hf_model_0001_0.pt", "model.layers.0.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.0.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.0.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.0.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.0.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.0.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.0.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.0.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.0.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.1.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.1.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.1.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.1.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.1.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.1.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.1.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.1.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.1.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.2.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.2.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.2.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.2.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.2.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.2.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.2.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.2.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.2.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.3.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.3.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.3.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.3.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.3.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.3.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.3.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.3.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.3.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.4.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.4.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.4.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.4.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.4.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.4.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.4.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.4.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.4.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.5.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.5.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.5.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.5.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.5.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.5.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.5.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.5.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.5.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.6.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.6.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.6.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.6.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.6.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.6.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.6.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.6.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.6.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.7.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.7.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.7.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.7.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.7.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.7.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.7.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.7.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.7.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.8.input_layernorm.weight": "hf_model_0001_0.pt", "model.layers.8.self_attn.q_proj.weight": "hf_model_0001_0.pt", "model.layers.8.self_attn.k_proj.weight": "hf_model_0001_0.pt", "model.layers.8.self_attn.v_proj.weight": "hf_model_0001_0.pt", "model.layers.8.self_attn.o_proj.weight": "hf_model_0001_0.pt", "model.layers.8.post_attention_layernorm.weight": "hf_model_0001_0.pt", "model.layers.8.mlp.gate_proj.weight": "hf_model_0001_0.pt", "model.layers.8.mlp.down_proj.weight": "hf_model_0001_0.pt", "model.layers.8.mlp.up_proj.weight": "hf_model_0001_0.pt", "model.layers.9.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.9.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.9.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.9.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.9.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.9.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.9.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.9.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.9.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.10.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.10.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.10.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.10.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.10.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.10.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.10.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.10.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.10.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.11.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.11.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.11.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.11.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.11.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.11.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.11.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.11.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.11.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.12.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.12.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.12.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.12.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.12.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.12.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.12.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.12.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.12.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.13.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.13.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.13.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.13.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.13.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.13.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.13.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.13.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.13.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.14.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.14.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.14.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.14.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.14.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.14.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.14.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.14.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.14.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.15.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.15.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.15.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.15.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.15.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.15.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.15.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.15.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.15.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.16.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.16.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.16.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.16.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.16.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.16.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.16.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.16.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.16.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.17.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.17.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.17.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.17.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.17.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.17.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.17.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.17.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.17.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.18.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.18.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.18.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.18.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.18.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.18.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.18.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.18.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.18.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.19.input_layernorm.weight": "hf_model_0002_0.pt", "model.layers.19.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.19.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.19.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.19.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.19.post_attention_layernorm.weight": "hf_model_0002_0.pt", "model.layers.19.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.19.mlp.down_proj.weight": "hf_model_0002_0.pt", "model.layers.19.mlp.up_proj.weight": "hf_model_0002_0.pt", "model.layers.20.self_attn.q_proj.weight": "hf_model_0002_0.pt", "model.layers.20.self_attn.k_proj.weight": "hf_model_0002_0.pt", "model.layers.20.self_attn.v_proj.weight": "hf_model_0002_0.pt", "model.layers.20.self_attn.o_proj.weight": "hf_model_0002_0.pt", "model.layers.20.mlp.gate_proj.weight": "hf_model_0002_0.pt", "model.layers.20.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.20.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.20.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.20.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.21.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.21.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.21.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.21.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.21.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.21.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.21.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.21.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.21.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.22.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.22.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.22.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.22.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.22.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.22.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.22.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.22.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.22.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.23.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.23.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.23.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.23.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.23.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.23.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.23.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.23.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.23.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.24.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.24.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.24.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.24.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.24.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.24.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.24.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.24.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.24.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.25.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.25.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.25.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.25.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.25.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.25.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.25.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.25.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.25.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.26.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.26.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.26.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.26.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.26.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.26.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.26.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.26.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.26.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.27.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.27.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.27.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.27.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.27.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.27.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.27.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.27.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.27.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.28.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.28.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.28.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.28.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.28.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.28.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.28.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.28.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.28.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.29.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.29.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.29.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.29.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.29.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.29.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.29.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.29.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.29.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.30.input_layernorm.weight": "hf_model_0003_0.pt", "model.layers.30.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.30.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.30.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.30.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.30.post_attention_layernorm.weight": "hf_model_0003_0.pt", "model.layers.30.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.30.mlp.down_proj.weight": "hf_model_0003_0.pt", "model.layers.30.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.31.self_attn.q_proj.weight": "hf_model_0003_0.pt", "model.layers.31.self_attn.k_proj.weight": "hf_model_0003_0.pt", "model.layers.31.self_attn.v_proj.weight": "hf_model_0003_0.pt", "model.layers.31.self_attn.o_proj.weight": "hf_model_0003_0.pt", "model.layers.31.mlp.gate_proj.weight": "hf_model_0003_0.pt", "model.layers.31.mlp.up_proj.weight": "hf_model_0003_0.pt", "model.layers.31.input_layernorm.weight": "hf_model_0004_0.pt", "model.layers.31.post_attention_layernorm.weight": "hf_model_0004_0.pt", "model.layers.31.mlp.down_proj.weight": "hf_model_0004_0.pt", "model.norm.weight": "hf_model_0004_0.pt", "lm_head.weight": "hf_model_0004_0.pt"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
}
|
16 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|eot_id|>",
|
2056 |
+
"model_input_names": [
|
2057 |
+
"input_ids",
|
2058 |
+
"attention_mask"
|
2059 |
+
],
|
2060 |
+
"model_max_length": 131072,
|
2061 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2062 |
+
}
|
venv/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# created by virtualenv automatically
|
2 |
+
*
|
venv/bin/activate
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file must be used with "source bin/activate" *from bash*
|
2 |
+
# you cannot run it directly
|
3 |
+
|
4 |
+
|
5 |
+
if [ "${BASH_SOURCE-}" = "$0" ]; then
|
6 |
+
echo "You must source this script: \$ source $0" >&2
|
7 |
+
exit 33
|
8 |
+
fi
|
9 |
+
|
10 |
+
deactivate () {
|
11 |
+
unset -f pydoc >/dev/null 2>&1 || true
|
12 |
+
|
13 |
+
# reset old environment variables
|
14 |
+
# ! [ -z ${VAR+_} ] returns true if VAR is declared at all
|
15 |
+
if ! [ -z "${_OLD_VIRTUAL_PATH:+_}" ] ; then
|
16 |
+
PATH="$_OLD_VIRTUAL_PATH"
|
17 |
+
export PATH
|
18 |
+
unset _OLD_VIRTUAL_PATH
|
19 |
+
fi
|
20 |
+
if ! [ -z "${_OLD_VIRTUAL_PYTHONHOME+_}" ] ; then
|
21 |
+
PYTHONHOME="$_OLD_VIRTUAL_PYTHONHOME"
|
22 |
+
export PYTHONHOME
|
23 |
+
unset _OLD_VIRTUAL_PYTHONHOME
|
24 |
+
fi
|
25 |
+
|
26 |
+
# The hash command must be called to get it to forget past
|
27 |
+
# commands. Without forgetting past commands the $PATH changes
|
28 |
+
# we made may not be respected
|
29 |
+
hash -r 2>/dev/null
|
30 |
+
|
31 |
+
if ! [ -z "${_OLD_VIRTUAL_PS1+_}" ] ; then
|
32 |
+
PS1="$_OLD_VIRTUAL_PS1"
|
33 |
+
export PS1
|
34 |
+
unset _OLD_VIRTUAL_PS1
|
35 |
+
fi
|
36 |
+
|
37 |
+
unset VIRTUAL_ENV
|
38 |
+
unset VIRTUAL_ENV_PROMPT
|
39 |
+
if [ ! "${1-}" = "nondestructive" ] ; then
|
40 |
+
# Self destruct!
|
41 |
+
unset -f deactivate
|
42 |
+
fi
|
43 |
+
}
|
44 |
+
|
45 |
+
# unset irrelevant variables
|
46 |
+
deactivate nondestructive
|
47 |
+
|
48 |
+
VIRTUAL_ENV='/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv'
|
49 |
+
if ([ "$OSTYPE" = "cygwin" ] || [ "$OSTYPE" = "msys" ]) && $(command -v cygpath &> /dev/null) ; then
|
50 |
+
VIRTUAL_ENV=$(cygpath -u "$VIRTUAL_ENV")
|
51 |
+
fi
|
52 |
+
export VIRTUAL_ENV
|
53 |
+
|
54 |
+
_OLD_VIRTUAL_PATH="$PATH"
|
55 |
+
PATH="$VIRTUAL_ENV/bin:$PATH"
|
56 |
+
export PATH
|
57 |
+
|
58 |
+
if [ "x" != x ] ; then
|
59 |
+
VIRTUAL_ENV_PROMPT=""
|
60 |
+
else
|
61 |
+
VIRTUAL_ENV_PROMPT=$(basename "$VIRTUAL_ENV")
|
62 |
+
fi
|
63 |
+
export VIRTUAL_ENV_PROMPT
|
64 |
+
|
65 |
+
# unset PYTHONHOME if set
|
66 |
+
if ! [ -z "${PYTHONHOME+_}" ] ; then
|
67 |
+
_OLD_VIRTUAL_PYTHONHOME="$PYTHONHOME"
|
68 |
+
unset PYTHONHOME
|
69 |
+
fi
|
70 |
+
|
71 |
+
if [ -z "${VIRTUAL_ENV_DISABLE_PROMPT-}" ] ; then
|
72 |
+
_OLD_VIRTUAL_PS1="${PS1-}"
|
73 |
+
PS1="(${VIRTUAL_ENV_PROMPT}) ${PS1-}"
|
74 |
+
export PS1
|
75 |
+
fi
|
76 |
+
|
77 |
+
# Make sure to unalias pydoc if it's already there
|
78 |
+
alias pydoc 2>/dev/null >/dev/null && unalias pydoc || true
|
79 |
+
|
80 |
+
pydoc () {
|
81 |
+
python -m pydoc "$@"
|
82 |
+
}
|
83 |
+
|
84 |
+
# The hash command must be called to get it to forget past
|
85 |
+
# commands. Without forgetting past commands the $PATH changes
|
86 |
+
# we made may not be respected
|
87 |
+
hash -r 2>/dev/null
|
venv/bin/activate.csh
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file must be used with "source bin/activate.csh" *from csh*.
|
2 |
+
# You cannot run it directly.
|
3 |
+
# Created by Davide Di Blasi <[email protected]>.
|
4 |
+
|
5 |
+
set newline='\
|
6 |
+
'
|
7 |
+
|
8 |
+
alias deactivate 'test $?_OLD_VIRTUAL_PATH != 0 && setenv PATH "$_OLD_VIRTUAL_PATH:q" && unset _OLD_VIRTUAL_PATH; rehash; test $?_OLD_VIRTUAL_PROMPT != 0 && set prompt="$_OLD_VIRTUAL_PROMPT:q" && unset _OLD_VIRTUAL_PROMPT; unsetenv VIRTUAL_ENV; unsetenv VIRTUAL_ENV_PROMPT; test "\!:*" != "nondestructive" && unalias deactivate && unalias pydoc'
|
9 |
+
|
10 |
+
# Unset irrelevant variables.
|
11 |
+
deactivate nondestructive
|
12 |
+
|
13 |
+
setenv VIRTUAL_ENV '/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv'
|
14 |
+
|
15 |
+
set _OLD_VIRTUAL_PATH="$PATH:q"
|
16 |
+
setenv PATH "$VIRTUAL_ENV:q/bin:$PATH:q"
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
if ('' != "") then
|
21 |
+
setenv VIRTUAL_ENV_PROMPT ''
|
22 |
+
else
|
23 |
+
setenv VIRTUAL_ENV_PROMPT "$VIRTUAL_ENV:t:q"
|
24 |
+
endif
|
25 |
+
|
26 |
+
if ( $?VIRTUAL_ENV_DISABLE_PROMPT ) then
|
27 |
+
if ( $VIRTUAL_ENV_DISABLE_PROMPT == "" ) then
|
28 |
+
set do_prompt = "1"
|
29 |
+
else
|
30 |
+
set do_prompt = "0"
|
31 |
+
endif
|
32 |
+
else
|
33 |
+
set do_prompt = "1"
|
34 |
+
endif
|
35 |
+
|
36 |
+
if ( $do_prompt == "1" ) then
|
37 |
+
# Could be in a non-interactive environment,
|
38 |
+
# in which case, $prompt is undefined and we wouldn't
|
39 |
+
# care about the prompt anyway.
|
40 |
+
if ( $?prompt ) then
|
41 |
+
set _OLD_VIRTUAL_PROMPT="$prompt:q"
|
42 |
+
if ( "$prompt:q" =~ *"$newline:q"* ) then
|
43 |
+
:
|
44 |
+
else
|
45 |
+
set prompt = '('"$VIRTUAL_ENV_PROMPT:q"') '"$prompt:q"
|
46 |
+
endif
|
47 |
+
endif
|
48 |
+
endif
|
49 |
+
|
50 |
+
unset env_name
|
51 |
+
unset do_prompt
|
52 |
+
|
53 |
+
alias pydoc python -m pydoc
|
54 |
+
|
55 |
+
rehash
|
venv/bin/activate.fish
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file must be used using `source bin/activate.fish` *within a running fish ( http://fishshell.com ) session*.
|
2 |
+
# Do not run it directly.
|
3 |
+
|
4 |
+
function _bashify_path -d "Converts a fish path to something bash can recognize"
|
5 |
+
set fishy_path $argv
|
6 |
+
set bashy_path $fishy_path[1]
|
7 |
+
for path_part in $fishy_path[2..-1]
|
8 |
+
set bashy_path "$bashy_path:$path_part"
|
9 |
+
end
|
10 |
+
echo $bashy_path
|
11 |
+
end
|
12 |
+
|
13 |
+
function _fishify_path -d "Converts a bash path to something fish can recognize"
|
14 |
+
echo $argv | tr ':' '\n'
|
15 |
+
end
|
16 |
+
|
17 |
+
function deactivate -d 'Exit virtualenv mode and return to the normal environment.'
|
18 |
+
# reset old environment variables
|
19 |
+
if test -n "$_OLD_VIRTUAL_PATH"
|
20 |
+
# https://github.com/fish-shell/fish-shell/issues/436 altered PATH handling
|
21 |
+
if test (echo $FISH_VERSION | head -c 1) -lt 3
|
22 |
+
set -gx PATH (_fishify_path "$_OLD_VIRTUAL_PATH")
|
23 |
+
else
|
24 |
+
set -gx PATH $_OLD_VIRTUAL_PATH
|
25 |
+
end
|
26 |
+
set -e _OLD_VIRTUAL_PATH
|
27 |
+
end
|
28 |
+
|
29 |
+
if test -n "$_OLD_VIRTUAL_PYTHONHOME"
|
30 |
+
set -gx PYTHONHOME "$_OLD_VIRTUAL_PYTHONHOME"
|
31 |
+
set -e _OLD_VIRTUAL_PYTHONHOME
|
32 |
+
end
|
33 |
+
|
34 |
+
if test -n "$_OLD_FISH_PROMPT_OVERRIDE"
|
35 |
+
and functions -q _old_fish_prompt
|
36 |
+
# Set an empty local `$fish_function_path` to allow the removal of `fish_prompt` using `functions -e`.
|
37 |
+
set -l fish_function_path
|
38 |
+
|
39 |
+
# Erase virtualenv's `fish_prompt` and restore the original.
|
40 |
+
functions -e fish_prompt
|
41 |
+
functions -c _old_fish_prompt fish_prompt
|
42 |
+
functions -e _old_fish_prompt
|
43 |
+
set -e _OLD_FISH_PROMPT_OVERRIDE
|
44 |
+
end
|
45 |
+
|
46 |
+
set -e VIRTUAL_ENV
|
47 |
+
set -e VIRTUAL_ENV_PROMPT
|
48 |
+
|
49 |
+
if test "$argv[1]" != 'nondestructive'
|
50 |
+
# Self-destruct!
|
51 |
+
functions -e pydoc
|
52 |
+
functions -e deactivate
|
53 |
+
functions -e _bashify_path
|
54 |
+
functions -e _fishify_path
|
55 |
+
end
|
56 |
+
end
|
57 |
+
|
58 |
+
# Unset irrelevant variables.
|
59 |
+
deactivate nondestructive
|
60 |
+
|
61 |
+
set -gx VIRTUAL_ENV '/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv'
|
62 |
+
|
63 |
+
# https://github.com/fish-shell/fish-shell/issues/436 altered PATH handling
|
64 |
+
if test (echo $FISH_VERSION | head -c 1) -lt 3
|
65 |
+
set -gx _OLD_VIRTUAL_PATH (_bashify_path $PATH)
|
66 |
+
else
|
67 |
+
set -gx _OLD_VIRTUAL_PATH $PATH
|
68 |
+
end
|
69 |
+
set -gx PATH "$VIRTUAL_ENV"'/bin' $PATH
|
70 |
+
|
71 |
+
# Prompt override provided?
|
72 |
+
# If not, just use the environment name.
|
73 |
+
if test -n ''
|
74 |
+
set -gx VIRTUAL_ENV_PROMPT ''
|
75 |
+
else
|
76 |
+
set -gx VIRTUAL_ENV_PROMPT (basename "$VIRTUAL_ENV")
|
77 |
+
end
|
78 |
+
|
79 |
+
# Unset `$PYTHONHOME` if set.
|
80 |
+
if set -q PYTHONHOME
|
81 |
+
set -gx _OLD_VIRTUAL_PYTHONHOME $PYTHONHOME
|
82 |
+
set -e PYTHONHOME
|
83 |
+
end
|
84 |
+
|
85 |
+
function pydoc
|
86 |
+
python -m pydoc $argv
|
87 |
+
end
|
88 |
+
|
89 |
+
if test -z "$VIRTUAL_ENV_DISABLE_PROMPT"
|
90 |
+
# Copy the current `fish_prompt` function as `_old_fish_prompt`.
|
91 |
+
functions -c fish_prompt _old_fish_prompt
|
92 |
+
|
93 |
+
function fish_prompt
|
94 |
+
# Run the user's prompt first; it might depend on (pipe)status.
|
95 |
+
set -l prompt (_old_fish_prompt)
|
96 |
+
|
97 |
+
printf '(%s) ' $VIRTUAL_ENV_PROMPT
|
98 |
+
|
99 |
+
string join -- \n $prompt # handle multi-line prompts
|
100 |
+
end
|
101 |
+
|
102 |
+
set -gx _OLD_FISH_PROMPT_OVERRIDE "$VIRTUAL_ENV"
|
103 |
+
end
|
venv/bin/activate.nu
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# virtualenv activation module
|
2 |
+
# Activate with `overlay use activate.nu`
|
3 |
+
# Deactivate with `deactivate`, as usual
|
4 |
+
#
|
5 |
+
# To customize the overlay name, you can call `overlay use activate.nu as foo`,
|
6 |
+
# but then simply `deactivate` won't work because it is just an alias to hide
|
7 |
+
# the "activate" overlay. You'd need to call `overlay hide foo` manually.
|
8 |
+
|
9 |
+
export-env {
|
10 |
+
def is-string [x] {
|
11 |
+
($x | describe) == 'string'
|
12 |
+
}
|
13 |
+
|
14 |
+
def has-env [...names] {
|
15 |
+
$names | each {|n|
|
16 |
+
$n in $env
|
17 |
+
} | all {|i| $i == true}
|
18 |
+
}
|
19 |
+
|
20 |
+
# Emulates a `test -z`, but btter as it handles e.g 'false'
|
21 |
+
def is-env-true [name: string] {
|
22 |
+
if (has-env $name) {
|
23 |
+
# Try to parse 'true', '0', '1', and fail if not convertible
|
24 |
+
let parsed = (do -i { $env | get $name | into bool })
|
25 |
+
if ($parsed | describe) == 'bool' {
|
26 |
+
$parsed
|
27 |
+
} else {
|
28 |
+
not ($env | get -i $name | is-empty)
|
29 |
+
}
|
30 |
+
} else {
|
31 |
+
false
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
let virtual_env = '/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv'
|
36 |
+
let bin = 'bin'
|
37 |
+
|
38 |
+
let is_windows = ($nu.os-info.family) == 'windows'
|
39 |
+
let path_name = (if (has-env 'Path') {
|
40 |
+
'Path'
|
41 |
+
} else {
|
42 |
+
'PATH'
|
43 |
+
}
|
44 |
+
)
|
45 |
+
|
46 |
+
let venv_path = ([$virtual_env $bin] | path join)
|
47 |
+
let new_path = ($env | get $path_name | prepend $venv_path)
|
48 |
+
|
49 |
+
# If there is no default prompt, then use the env name instead
|
50 |
+
let virtual_env_prompt = (if ('' | is-empty) {
|
51 |
+
($virtual_env | path basename)
|
52 |
+
} else {
|
53 |
+
''
|
54 |
+
})
|
55 |
+
|
56 |
+
let new_env = {
|
57 |
+
$path_name : $new_path
|
58 |
+
VIRTUAL_ENV : $virtual_env
|
59 |
+
VIRTUAL_ENV_PROMPT : $virtual_env_prompt
|
60 |
+
}
|
61 |
+
|
62 |
+
let new_env = (if (is-env-true 'VIRTUAL_ENV_DISABLE_PROMPT') {
|
63 |
+
$new_env
|
64 |
+
} else {
|
65 |
+
# Creating the new prompt for the session
|
66 |
+
let virtual_prefix = $'(char lparen)($virtual_env_prompt)(char rparen) '
|
67 |
+
|
68 |
+
# Back up the old prompt builder
|
69 |
+
let old_prompt_command = (if (has-env 'PROMPT_COMMAND') {
|
70 |
+
$env.PROMPT_COMMAND
|
71 |
+
} else {
|
72 |
+
''
|
73 |
+
})
|
74 |
+
|
75 |
+
let new_prompt = (if (has-env 'PROMPT_COMMAND') {
|
76 |
+
if 'closure' in ($old_prompt_command | describe) {
|
77 |
+
{|| $'($virtual_prefix)(do $old_prompt_command)' }
|
78 |
+
} else {
|
79 |
+
{|| $'($virtual_prefix)($old_prompt_command)' }
|
80 |
+
}
|
81 |
+
} else {
|
82 |
+
{|| $'($virtual_prefix)' }
|
83 |
+
})
|
84 |
+
|
85 |
+
$new_env | merge {
|
86 |
+
PROMPT_COMMAND : $new_prompt
|
87 |
+
VIRTUAL_PREFIX : $virtual_prefix
|
88 |
+
}
|
89 |
+
})
|
90 |
+
|
91 |
+
# Environment variables that will be loaded as the virtual env
|
92 |
+
load-env $new_env
|
93 |
+
}
|
94 |
+
|
95 |
+
export alias pydoc = python -m pydoc
|
96 |
+
export alias deactivate = overlay hide activate
|
venv/bin/activate.ps1
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
$script:THIS_PATH = $myinvocation.mycommand.path
|
2 |
+
$script:BASE_DIR = Split-Path (Resolve-Path "$THIS_PATH/..") -Parent
|
3 |
+
|
4 |
+
function global:deactivate([switch] $NonDestructive) {
|
5 |
+
if (Test-Path variable:_OLD_VIRTUAL_PATH) {
|
6 |
+
$env:PATH = $variable:_OLD_VIRTUAL_PATH
|
7 |
+
Remove-Variable "_OLD_VIRTUAL_PATH" -Scope global
|
8 |
+
}
|
9 |
+
|
10 |
+
if (Test-Path function:_old_virtual_prompt) {
|
11 |
+
$function:prompt = $function:_old_virtual_prompt
|
12 |
+
Remove-Item function:\_old_virtual_prompt
|
13 |
+
}
|
14 |
+
|
15 |
+
if ($env:VIRTUAL_ENV) {
|
16 |
+
Remove-Item env:VIRTUAL_ENV -ErrorAction SilentlyContinue
|
17 |
+
}
|
18 |
+
|
19 |
+
if ($env:VIRTUAL_ENV_PROMPT) {
|
20 |
+
Remove-Item env:VIRTUAL_ENV_PROMPT -ErrorAction SilentlyContinue
|
21 |
+
}
|
22 |
+
|
23 |
+
if (!$NonDestructive) {
|
24 |
+
# Self destruct!
|
25 |
+
Remove-Item function:deactivate
|
26 |
+
Remove-Item function:pydoc
|
27 |
+
}
|
28 |
+
}
|
29 |
+
|
30 |
+
function global:pydoc {
|
31 |
+
python -m pydoc $args
|
32 |
+
}
|
33 |
+
|
34 |
+
# unset irrelevant variables
|
35 |
+
deactivate -nondestructive
|
36 |
+
|
37 |
+
$VIRTUAL_ENV = $BASE_DIR
|
38 |
+
$env:VIRTUAL_ENV = $VIRTUAL_ENV
|
39 |
+
|
40 |
+
if ("" -ne "") {
|
41 |
+
$env:VIRTUAL_ENV_PROMPT = ""
|
42 |
+
}
|
43 |
+
else {
|
44 |
+
$env:VIRTUAL_ENV_PROMPT = $( Split-Path $env:VIRTUAL_ENV -Leaf )
|
45 |
+
}
|
46 |
+
|
47 |
+
New-Variable -Scope global -Name _OLD_VIRTUAL_PATH -Value $env:PATH
|
48 |
+
|
49 |
+
$env:PATH = "$env:VIRTUAL_ENV/bin:" + $env:PATH
|
50 |
+
if (!$env:VIRTUAL_ENV_DISABLE_PROMPT) {
|
51 |
+
function global:_old_virtual_prompt {
|
52 |
+
""
|
53 |
+
}
|
54 |
+
$function:_old_virtual_prompt = $function:prompt
|
55 |
+
|
56 |
+
function global:prompt {
|
57 |
+
# Add the custom prefix to the existing prompt
|
58 |
+
$previous_prompt_value = & $function:_old_virtual_prompt
|
59 |
+
("(" + $env:VIRTUAL_ENV_PROMPT + ") " + $previous_prompt_value)
|
60 |
+
}
|
61 |
+
}
|
venv/bin/activate_this.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Activate virtualenv for current interpreter:
|
3 |
+
|
4 |
+
Use exec(open(this_file).read(), {'__file__': this_file}).
|
5 |
+
|
6 |
+
This can be used when you must use an existing Python interpreter, not the virtualenv bin/python.
|
7 |
+
""" # noqa: D415
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import os
|
11 |
+
import site
|
12 |
+
import sys
|
13 |
+
|
14 |
+
try:
|
15 |
+
abs_file = os.path.abspath(__file__)
|
16 |
+
except NameError as exc:
|
17 |
+
msg = "You must use exec(open(this_file).read(), {'__file__': this_file}))"
|
18 |
+
raise AssertionError(msg) from exc
|
19 |
+
|
20 |
+
bin_dir = os.path.dirname(abs_file)
|
21 |
+
base = bin_dir[: -len("bin") - 1] # strip away the bin part from the __file__, plus the path separator
|
22 |
+
|
23 |
+
# prepend bin to PATH (this file is inside the bin directory)
|
24 |
+
os.environ["PATH"] = os.pathsep.join([bin_dir, *os.environ.get("PATH", "").split(os.pathsep)])
|
25 |
+
os.environ["VIRTUAL_ENV"] = base # virtual env is right above bin directory
|
26 |
+
os.environ["VIRTUAL_ENV_PROMPT"] = "" or os.path.basename(base) # noqa: SIM222
|
27 |
+
|
28 |
+
# add the virtual environments libraries to the host python import mechanism
|
29 |
+
prev_length = len(sys.path)
|
30 |
+
for lib in "../lib/python3.12/site-packages".split(os.pathsep):
|
31 |
+
path = os.path.realpath(os.path.join(bin_dir, lib))
|
32 |
+
site.addsitedir(path.decode("utf-8") if "" else path)
|
33 |
+
sys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]
|
34 |
+
|
35 |
+
sys.real_prefix = sys.prefix
|
36 |
+
sys.prefix = base
|
venv/bin/convert-caffe2-to-onnx
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from caffe2.python.onnx.bin.conversion import caffe2_to_onnx
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(caffe2_to_onnx())
|
venv/bin/convert-onnx-to-caffe2
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from caffe2.python.onnx.bin.conversion import onnx_to_caffe2
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(onnx_to_caffe2())
|
venv/bin/debugpy
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from debugpy.server.cli import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/f2py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from numpy.f2py.f2py2e import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/httpx
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from httpx import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/huggingface-cli
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from huggingface_hub.commands.huggingface_cli import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/ipython
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from IPython import start_ipython
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(start_ipython())
|
venv/bin/ipython3
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from IPython import start_ipython
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(start_ipython())
|
venv/bin/isympy
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from isympy import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/jlpm
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from jupyterlab.jlpmapp import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/jsonpointer
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import json
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import jsonpointer
|
10 |
+
|
11 |
+
parser = argparse.ArgumentParser(
|
12 |
+
description='Resolve a JSON pointer on JSON files')
|
13 |
+
|
14 |
+
# Accept pointer as argument or as file
|
15 |
+
ptr_group = parser.add_mutually_exclusive_group(required=True)
|
16 |
+
|
17 |
+
ptr_group.add_argument('-f', '--pointer-file', type=argparse.FileType('r'),
|
18 |
+
nargs='?',
|
19 |
+
help='File containing a JSON pointer expression')
|
20 |
+
|
21 |
+
ptr_group.add_argument('POINTER', type=str, nargs='?',
|
22 |
+
help='A JSON pointer expression')
|
23 |
+
|
24 |
+
parser.add_argument('FILE', type=argparse.FileType('r'), nargs='+',
|
25 |
+
help='Files for which the pointer should be resolved')
|
26 |
+
parser.add_argument('--indent', type=int, default=None,
|
27 |
+
help='Indent output by n spaces')
|
28 |
+
parser.add_argument('-v', '--version', action='version',
|
29 |
+
version='%(prog)s ' + jsonpointer.__version__)
|
30 |
+
|
31 |
+
|
32 |
+
def main():
|
33 |
+
try:
|
34 |
+
resolve_files()
|
35 |
+
except KeyboardInterrupt:
|
36 |
+
sys.exit(1)
|
37 |
+
|
38 |
+
|
39 |
+
def parse_pointer(args):
|
40 |
+
if args.POINTER:
|
41 |
+
ptr = args.POINTER
|
42 |
+
elif args.pointer_file:
|
43 |
+
ptr = args.pointer_file.read().strip()
|
44 |
+
else:
|
45 |
+
parser.print_usage()
|
46 |
+
sys.exit(1)
|
47 |
+
|
48 |
+
return ptr
|
49 |
+
|
50 |
+
|
51 |
+
def resolve_files():
|
52 |
+
""" Resolve a JSON pointer on JSON files """
|
53 |
+
args = parser.parse_args()
|
54 |
+
|
55 |
+
ptr = parse_pointer(args)
|
56 |
+
|
57 |
+
for f in args.FILE:
|
58 |
+
doc = json.load(f)
|
59 |
+
try:
|
60 |
+
result = jsonpointer.resolve_pointer(doc, ptr)
|
61 |
+
print(json.dumps(result, indent=args.indent))
|
62 |
+
except jsonpointer.JsonPointerException as e:
|
63 |
+
print('Could not resolve pointer: %s' % str(e), file=sys.stderr)
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
main()
|
venv/bin/jsonschema
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from jsonschema.cli import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/jupyter
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from jupyter_core.command import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/jupyter-dejavu
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from nbconvert.nbconvertapp import dejavu_main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(dejavu_main())
|
venv/bin/jupyter-events
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from jupyter_events.cli import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/jupyter-execute
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from nbclient.cli import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/jupyter-kernel
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from jupyter_client.kernelapp import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|
venv/bin/jupyter-kernelspec
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from jupyter_client.kernelspecapp import KernelSpecApp
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(KernelSpecApp.launch_instance())
|
venv/bin/jupyter-lab
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/Users/mbuali/Desktop/Meta-Llama-3.1-8B-Instruct-Arabic/venv/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
from jupyterlab.labapp import main
|
6 |
+
if __name__ == '__main__':
|
7 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
8 |
+
sys.exit(main())
|