from sympy import (zeros, Matrix, symbols, lambdify, sqrt, pi, simplify) from sympy.physics.mechanics import (dynamicsymbols, cross, inertia, RigidBody, ReferenceFrame, KanesMethod) def _create_rolling_disc(): # Define symbols and coordinates t = dynamicsymbols._t q1, q2, q3, q4, q5, u1, u2, u3, u4, u5 = dynamicsymbols('q1:6 u1:6') g, r, m = symbols('g r m') # Define bodies and frames ground = RigidBody('ground') disc = RigidBody('disk', mass=m) disc.inertia = (m * r ** 2 / 4 * inertia(disc.frame, 1, 2, 1), disc.masscenter) ground.masscenter.set_vel(ground.frame, 0) disc.masscenter.set_vel(disc.frame, 0) int_frame = ReferenceFrame('int_frame') # Orient frames int_frame.orient_body_fixed(ground.frame, (q1, q2, 0), 'zxy') disc.frame.orient_axis(int_frame, int_frame.y, q3) g_w_d = disc.frame.ang_vel_in(ground.frame) disc.frame.set_ang_vel(ground.frame, u1 * disc.x + u2 * disc.y + u3 * disc.z) # Define points cp = ground.masscenter.locatenew('contact_point', q4 * ground.x + q5 * ground.y) cp.set_vel(ground.frame, u4 * ground.x + u5 * ground.y) disc.masscenter.set_pos(cp, r * int_frame.z) disc.masscenter.set_vel(ground.frame, cross( disc.frame.ang_vel_in(ground.frame), disc.masscenter.pos_from(cp))) # Define kinematic differential equations kdes = [g_w_d.dot(disc.x) - u1, g_w_d.dot(disc.y) - u2, g_w_d.dot(disc.z) - u3, q4.diff(t) - u4, q5.diff(t) - u5] # Define nonholonomic constraints v0 = cp.vel(ground.frame) + cross( disc.frame.ang_vel_in(int_frame), cp.pos_from(disc.masscenter)) fnh = [v0.dot(ground.x), v0.dot(ground.y)] # Define loads loads = [(disc.masscenter, -disc.mass * g * ground.z)] bodies = [disc] return { 'frame': ground.frame, 'q_ind': [q1, q2, q3, q4, q5], 'u_ind': [u1, u2, u3], 'u_dep': [u4, u5], 'kdes': kdes, 'fnh': fnh, 'bodies': bodies, 'loads': loads } def _verify_rolling_disc_numerically(kane, all_zero=False): q, u, p = dynamicsymbols('q1:6'), dynamicsymbols('u1:6'), symbols('g r m') eval_sys = lambdify((q, u, p), (kane.mass_matrix_full, kane.forcing_full), cse=True) solve_sys = lambda q, u, p: Matrix.LUsolve( *(Matrix(mat) for mat in eval_sys(q, u, p))) solve_u_dep = lambdify((q, u[:3], p), kane._Ars * Matrix(u[:3]), cse=True) eps = 1e-10 p_vals = (9.81, 0.26, 3.43) # First numeric test q_vals = (0.3, 0.1, 1.97, -0.35, 2.27) u_vals = [-0.2, 1.3, 0.15] u_vals.extend(solve_u_dep(q_vals, u_vals, p_vals)[:2, 0]) expected = Matrix([ 0.126603940595934, 0.215942571601660, 1.28736069604936, 0.319764288376543, 0.0989146857254898, -0.925848952664489, -0.0181350656532944, 2.91695398184589, -0.00992793421754526, 0.0412861634829171]) assert all(abs(x) < eps for x in (solve_sys(q_vals, u_vals, p_vals) - expected)) # Second numeric test q_vals = (3.97, -0.28, 8.2, -0.35, 2.27) u_vals = [-0.25, -2.2, 0.62] u_vals.extend(solve_u_dep(q_vals, u_vals, p_vals)[:2, 0]) expected = Matrix([ 0.0259159090798597, 0.668041660387416, -2.19283799213811, 0.385441810852219, 0.420109283790573, 1.45030568179066, -0.0110924422400793, -8.35617840186040, -0.154098542632173, -0.146102664410010]) assert all(abs(x) < eps for x in (solve_sys(q_vals, u_vals, p_vals) - expected)) if all_zero: q_vals = (0, 0, 0, 0, 0) u_vals = (0, 0, 0, 0, 0) assert solve_sys(q_vals, u_vals, p_vals) == zeros(10, 1) def test_kane_rolling_disc_lu(): props = _create_rolling_disc() kane = KanesMethod(props['frame'], props['q_ind'], props['u_ind'], props['kdes'], u_dependent=props['u_dep'], velocity_constraints=props['fnh'], bodies=props['bodies'], forcelist=props['loads'], explicit_kinematics=False, constraint_solver='LU') kane.kanes_equations() _verify_rolling_disc_numerically(kane) def test_kane_rolling_disc_kdes_callable(): props = _create_rolling_disc() kane = KanesMethod( props['frame'], props['q_ind'], props['u_ind'], props['kdes'], u_dependent=props['u_dep'], velocity_constraints=props['fnh'], bodies=props['bodies'], forcelist=props['loads'], explicit_kinematics=False, kd_eqs_solver=lambda A, b: simplify(A.LUsolve(b))) q, u, p = dynamicsymbols('q1:6'), dynamicsymbols('u1:6'), symbols('g r m') qd = dynamicsymbols('q1:6', 1) eval_kdes = lambdify((q, qd, u, p), tuple(kane.kindiffdict().items())) eps = 1e-10 # Test with only zeros. If 'LU' would be used this would result in nan. p_vals = (9.81, 0.25, 3.5) zero_vals = (0, 0, 0, 0, 0) assert all(abs(qdi - fui) < eps for qdi, fui in eval_kdes(zero_vals, zero_vals, zero_vals, p_vals)) # Test with some arbitrary values q_vals = tuple(map(float, (pi / 6, pi / 3, pi / 2, 0.42, 0.62))) qd_vals = tuple(map(float, (4, 1 / 3, 4 - 2 * sqrt(3), 0.25 * (2 * sqrt(3) - 3), 0.25 * (2 - sqrt(3))))) u_vals = tuple(map(float, (-2, 4, 1 / 3, 0.25 * (-3 + 2 * sqrt(3)), 0.25 * (-sqrt(3) + 2)))) assert all(abs(qdi - fui) < eps for qdi, fui in eval_kdes(q_vals, qd_vals, u_vals, p_vals))