# mypy: allow-untyped-defs import abc import collections import dataclasses import itertools import logging import re import typing from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union from unittest.mock import patch import sympy import torch from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols from .codegen.common import index_prevent_reordering from .utils import ( get_dtype_size, reduction_num_outputs, sympy_index_symbol, sympy_str, sympy_subs, VarRanges, ) from .virtualized import OpsHandler, ReductionType, V log = logging.getLogger(__name__) is_indirect = re.compile(r"indirect|tmp").search class Dep(abc.ABC): name: str index: sympy.Expr @abc.abstractmethod def rename(self, renames: Dict[str, str]) -> "Dep": pass @abc.abstractmethod def get_numel(self) -> sympy.Expr: pass @abc.abstractmethod def numbytes_hint(self): pass @abc.abstractmethod def has_unbacked_symbols(self) -> bool: pass @abc.abstractmethod def is_contiguous(self) -> bool: pass @dataclasses.dataclass(frozen=True) class MemoryDep(Dep): name: str index: sympy.Expr var_names: Tuple[sympy.Symbol, ...] size: Tuple[sympy.Expr, ...] mode: Optional[str] = None def __repr__(self): return f"MemoryDep({self.name!r}, {self.index}, {self.ranges}, {self.mode})" def get_offset(self): """ Return the offset by setting every variable to be 0. """ return sympy_subs(self.index, {v: 0 for v in self.var_names}) def normalize_with_stride_order(self, prefix="t"): r""" Used to decide if two MemoryDep does not equal due to different loop orders. More specifically, when dep1 and dep2 are not equal, we can normalize both and check if they are equal after that. If yes, then the mismatch is caused by different loop orders. """ # import here to avoid circular import from torch._inductor import ir strides = V.graph.sizevars.stride_hints(self.index, self.var_names) # pick a loop order with stride ordered decreasingly order = sorted(range(len(strides)), key=strides.__getitem__, reverse=True) stride_reorder = ir.same_reorder(order) sizes = self.size var_names = self.var_names new_reordered_sizes = stride_reorder(sizes) new_reordered_var_names = stride_reorder(var_names) new_simplified_sizes, reindex, prune = V.graph.sizevars._simplify_loops( new_reordered_var_names, new_reordered_sizes, index_prevent_reordering( [self.index], new_reordered_var_names, new_reordered_sizes ), ) # now let's create new symbols with the passed in prefix var_ranges, add_var = var_builder(prefix) replacement = dict( zip( new_reordered_var_names, reindex([add_var(x) for x in new_simplified_sizes]), ) ) new_index = sympy_subs(sympy.expand(self.index), replacement) out = MemoryDep(self.name, new_index, tuple(var_ranges.keys()), tuple(var_ranges.values())) # type: ignore[arg-type] return out @property def ranges(self) -> Dict[sympy.Symbol, sympy.Expr]: """{c0: 128, c1: 512, ...}""" return dict(zip(self.var_names, self.size)) def get_numel(self) -> sympy.Expr: if self.is_indirect(): numel = V.graph.get_numel(self.name) else: vars = set(self.index.free_symbols) numel = sympy.Integer(1) for var, size in zip(self.var_names, self.size): if var in vars: numel = numel * size return numel def rename(self, renames: Dict[str, str]) -> "MemoryDep": if self.name in renames: return MemoryDep( renames[self.name], self.index, var_names=self.var_names, size=self.size, mode=self.mode, ) return self def numbytes_hint(self): return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size( V.graph.get_dtype(self.name) ) def has_unbacked_symbols(self): return len(free_unbacked_symbols(self.get_numel())) > 0 def is_contiguous(self) -> bool: return isinstance(self.index, sympy.Symbol) and self.index in self.var_names def stride1_for_last_dim(self, result_for_complex_expression=True) -> bool: """ Whether the stride for the last dimension is 1. """ # python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_masked_scatter_cuda_float16 # will exercise thru this corner case. if len(self.var_names) == 0: return True terms = self.index.args if isinstance(self.index, sympy.Add) else [self.index] last_sym = self.var_names[-1] for term in terms: if term is last_sym: return True # Having a >1 stride for the last dimension is bad for perf # return False. if ( isinstance(term, sympy.Mul) and len(term.args) == 2 and term.args[1] is last_sym and isinstance(term.args[0], (int, sympy.Integer)) and term.args[0] > 1 ): return False return result_for_complex_expression def is_scalar(self) -> bool: if isinstance(self.index, sympy.Symbol): return self.index not in self.var_names and not self.is_indirect() return isinstance(self.index, (int, sympy.Integer)) def is_indirect(self) -> bool: return any(is_indirect(v.name) for v in self.index.free_symbols) # type: ignore[attr-defined] @dataclasses.dataclass(frozen=True) class StarDep(Dep): name: str mode: Optional[str] = None # depends on the entire buffer @property def index(self): raise NotImplementedError("StarDep does not have an index") def get_numel(self) -> sympy.Expr: return V.graph.get_numel(self.name) def rename(self, renames: Dict[str, str]) -> "StarDep": if self.name in renames: return StarDep(renames[self.name], self.mode) return self def numbytes_hint(self): return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size( V.graph.get_dtype(self.name) ) def has_unbacked_symbols(self): return len(free_unbacked_symbols(self.get_numel())) > 0 def is_contiguous(self) -> bool: return False def is_scalar(self) -> bool: return False def is_indirect(self) -> bool: return False # Used for tracking mutation ordering # if A reads a buffer and B mutates it # B must be ordered after A # # This is useful for a variety of reasons. # For example, if A's read is never actually used, we can eliminate it. # Another case is if A's buffer ends up being fused away, we never need to # materialize that buffer @dataclasses.dataclass(frozen=True) class WeakDep(Dep): name: str @property def index(self): raise NotImplementedError("WeakDep does not have an index") def get_numel(self) -> sympy.Expr: return sympy.Integer(1) def rename(self, renames: Dict[str, str]) -> "WeakDep": if self.name in renames: return WeakDep(renames[self.name]) return self def numbytes_hint(self): return 1 # Purely inserted for ordering, not an actual dep def has_unbacked_symbols(self): return False def is_contiguous(self) -> bool: return False @dataclasses.dataclass(frozen=True) class IndexExprDep: index: sympy.Expr # type: ignore[assignment] var_names: Tuple[sympy.Symbol, ...] size: Tuple[sympy.Expr, ...] @dataclasses.dataclass class ReadWrites: reads: Set[Dep] writes: Set[Dep] index_exprs: Set[IndexExprDep] range_vars: Optional[List[sympy.Expr]] = None var_ranges: Optional[VarRanges] = None op_counts: typing.Counter[str] = dataclasses.field( default_factory=collections.Counter ) def rename(self, renames: typing.Dict[str, str]) -> "ReadWrites": return ReadWrites( {dep.rename(renames) for dep in self.reads}, {dep.rename(renames) for dep in self.writes}, self.index_exprs, self.range_vars, self.var_ranges, op_counts=self.op_counts, ) def with_read(self, dep: Dep) -> "ReadWrites": assert isinstance(dep, (WeakDep, StarDep)) return ReadWrites( set.union(self.reads, {dep}), self.writes, self.index_exprs, self.range_vars, self.var_ranges, op_counts=self.op_counts, ) def merge(self, other: "ReadWrites"): reads = set.union(self.reads, other.reads) writes = set.union(self.writes, other.writes) index_exprs = set.union(self.index_exprs, other.index_exprs) op_counts = collections.Counter(self.op_counts) op_counts.update(other.op_counts) return ReadWrites(reads - writes, writes, index_exprs, op_counts=op_counts) @staticmethod def merge_list(read_writes: List["ReadWrites"]): all_writes = set.union(*[rw.writes for rw in read_writes]) all_reads = set.union(*[rw.reads for rw in read_writes]) - all_writes all_index_exprs = set.union(*[rw.index_exprs for rw in read_writes]) op_counts: typing.Counter[Any] = collections.Counter() for rw in read_writes: op_counts.update(rw.op_counts) return ReadWrites(all_reads, all_writes, all_index_exprs, op_counts=op_counts) def remove_reads(self, rem_reads): return ReadWrites( self.reads - rem_reads, self.writes, self.index_exprs, self.range_vars, self.var_ranges, op_counts=self.op_counts, ) def reads_and_writes(self): return itertools.chain(self.reads, self.writes) def buffer_names(self, ignore_integer_index=True): """ Integer index is used for load_seed. """ names = set() for dep in self.reads_and_writes(): if not isinstance(dep, MemoryDep): continue if not ignore_integer_index or not isinstance( dep.index, (int, sympy.Integer) ): names.add(dep.name) return names class _RecordLoadStoreInner(V.MockHandler): # type: ignore[name-defined] def __init__(self, var_ranges: VarRanges, normalize: bool): super().__init__() self._reads: Set[Dep] = set() self._writes: Set[MemoryDep] = set() self._index_exprs: Set[IndexExprDep] = set() self._var_ranges: VarRanges = var_ranges self._normalize: bool = normalize def canonicalize( self, index: sympy.Expr ) -> Tuple[sympy.Expr, Tuple[sympy.Symbol, ...], Tuple[sympy.Expr, ...]]: if not self._normalize: sizes = [V.graph.sizevars.simplify(x) for x in self._var_ranges.values()] var_names = tuple( k for k, v in zip(self._var_ranges.keys(), sizes) if v != 1 ) sizes = tuple(v for v in sizes if v != 1) return index, var_names, sizes # type: ignore[return-value] # Try to further simplify the indexes even if simplify_loops didn't # convert it to the simplest form because of the interference from # different indexing formulas. free_symbols = index.free_symbols var_ranges = { k: V.graph.sizevars.simplify(v) for k, v in self._var_ranges.items() # TODO(jansel): explore this further normalization # if k in free_symbols } index_vars = [*var_ranges.keys()] sizes = tuple(var_ranges.values()) new_sizes, reindex, prune = V.graph.sizevars._simplify_loops( index_vars, sizes, index_prevent_reordering([index], index_vars, sizes), ) # assign new variables each dimension to deal with numbering mismatches # d0, d1, d2 could become d0, d2 -- which won't match d0, d1 new_vars, add_var = var_builder(canonicalization_prefix()) replacement = dict(zip(index_vars, reindex([add_var(x) for x in new_sizes]))) index = sympy_subs(sympy.expand(index), replacement) new_vars = [*new_vars.keys()] new_sizes = [*new_sizes] free_symbols = index.free_symbols while new_vars and new_vars[-1] not in free_symbols: # Reduction has last (reduced) dim in its sizes, but # downstream users won't. Normalize this away. new_vars.pop() new_sizes.pop() return index, tuple(new_vars), tuple(new_sizes) # type: ignore[arg-type] def load(self, name: str, index: sympy.Expr) -> str: self._reads.add(MemoryDep(name, *self.canonicalize(index))) return f"load({name}, {sympy_str(index)})" def load_seed(self, name: str, index: int): assert isinstance(index, int) return self.load(name, sympy.Integer(index)) def store(self, name: str, index: sympy.Expr, value: str, mode=None) -> str: self._writes.add(MemoryDep(name, *self.canonicalize(index), mode=mode)) return f"store({name}, {sympy_str(index)}, {value}, {mode})" def store_reduction(self, name: str, index, value) -> str: return self.store(name, index, f"store_reduction({value})") def index_expr(self, index: sympy.Expr, dtype) -> str: self._index_exprs.add(IndexExprDep(*self.canonicalize(index))) return f"index_expr({sympy_str(index)}, {dtype})" def bucketize( self, values, offsets_name: str, offsets_size: sympy.Expr, indexing_dtype: torch.dtype, right: bool, ): self._reads.add(StarDep(offsets_name)) return f"bucketize({values}, {offsets_name}, {sympy_str(offsets_size)}, {indexing_dtype}, {right})" class _OpCounter: """Shim to count how many times each op is used""" def __init__(self, inner): super().__init__() self.parent_handler = inner self._op_counts: typing.Counter[Any] = collections.Counter() def __getattr__(self, name): self._op_counts[name] += 1 return getattr(self.parent_handler, name) class RecordLoadStore(V.KernelFormatterHandler): # type: ignore[name-defined] def __init__(self, var_ranges: VarRanges, normalize: bool): parent_handler = _RecordLoadStoreInner( var_ranges=var_ranges, normalize=normalize ) parent_handler = _OpCounter(parent_handler) super().__init__(parent_handler=parent_handler) # TODO: check call sites def var_builder(prefix: str) -> Tuple[VarRanges, Callable[[sympy.Expr], sympy.Symbol]]: cnt = itertools.count() var_ranges: VarRanges = dict() def add_var(length: sympy.Expr) -> sympy.Symbol: v = sympy_index_symbol(f"{prefix}{next(cnt)}") var_ranges[v] = length return v return var_ranges, add_var def index_vars_no_squeeze(*argsizes: Tuple[sympy.Expr, ...], prefix: str): var_ranges, add_var = var_builder(prefix) args: List[List[sympy.Symbol]] = [] for size in argsizes: args.append(list(map(add_var, size))) return args, var_ranges def index_vars_squeeze(*argsizes: Tuple[sympy.Expr, ...], prefix: str = "d"): from .ir import SqueezeView var_ranges, add_var = var_builder(prefix) args: List[List[sympy.Expr]] = [] new_sizes: List[List[sympy.Expr]] = [] for size in argsizes: new_size, reindex = SqueezeView.squeezer(size) new_sizes.append(new_size) args.append(reindex(list(map(add_var, new_size)))) return args, var_ranges def extract_read_writes( fn: Callable[..., Any], *argsizes: Tuple[sympy.Expr, ...], normalize: bool = False, prefix: str = "d", ): args, var_ranges = index_vars_squeeze(*argsizes, prefix=prefix) rw = RecordLoadStore(var_ranges, normalize=normalize) with V.set_ops_handler(rw): fn(*args) if normalize: range_vars = [] # Number of vars could differ due to normalization else: range_vars = list(itertools.chain.from_iterable(args)) inner = rw.parent_handler.parent_handler return ReadWrites( set(inner._reads), set(inner._writes), inner._index_exprs, range_vars, var_ranges, rw.parent_handler._op_counts, ) def extract_input_node_reduction_ranges( input_node: "torch._inductor.ir.TensorBox", ) -> Tuple[Optional[List[sympy.Expr]], Optional[List[sympy.Expr]]]: """ Returns the size and reduction size of all inputs, if the sizes and reduction_sizes (if exist) are all the same. It's possible that a node has multiple inputs, some are Reduction nodes and others are Pointwise nodes. In this case, reduction_sizes of the Reduction nodes need to be the same. Otherwise returns (None, None). """ from .ir import ComputedBuffer, Loops if isinstance(input_node.data, ComputedBuffer): # Input node has already been realized. Return its size and reduction_size. size = input_node.get_size() reduction_size = input_node.get_reduction_size() if len(reduction_size) > 0: return (size, reduction_size) else: return (None, None) if not isinstance(input_node.data.data, Loops): # type: ignore[attr-defined] # Other IRNodes do not have reduction_ranges. return (None, None) # There is one issue: what if there are views / permutations between the input node and its dependent realized nodes? # The current method still uses reduction ranges from the dependent realized node, which is not ideal. # Is there a way to check whether there are permutations inbetween? reads = input_node.get_reads() reduction_size = None size = None while reduction_size is None and len(reads) > 0: seen = set() new_reads = [] for read in reads: if not isinstance(read, MemoryDep): continue if read.name in seen: continue seen.add(read.name) buffer = V.graph.get_buffer(read.name) if buffer is None: continue if ( isinstance(buffer, ComputedBuffer) and len(buffer.get_reduction_size()) > 0 ): if reduction_size is None: reduction_size = buffer.get_reduction_size() size = buffer.get_size() elif ( reduction_size != buffer.get_reduction_size() or size != buffer.get_size() ): return (None, None) else: new_reads.extend(buffer.get_reads()) if reads == new_reads: return (size, reduction_size) else: reads = new_reads return (size, reduction_size) def canonicalization_prefix(): return "c" # ops handler which computes all the free unbacked symbols for an IR class FreeUnbackedSymbolsOpsHandler: symbols: Set[sympy.Symbol] def __init__(self): self.symbols = set() def __getattr__(self, name: str) -> Callable[..., Any]: def inner(*args, **kwargs): for a in itertools.chain(args, kwargs.values()): if isinstance(a, (sympy.Expr, sympy.logic.boolalg.Boolean)): self.symbols |= free_unbacked_symbols(a) return inner def indirect_indexing(self, index_var, size, check=True) -> sympy.Symbol: assert not isinstance(index_var, (sympy.Expr, sympy.logic.boolalg.Boolean)) self.symbols |= free_unbacked_symbols(size) return sympy_index_symbol(f"({str(index_var)})") def frexp(self, x): return (None,) * 2 def scan(self, dtypes, combine_fn, values): return (None,) * len(values) def reduction( self, dtype: torch.dtype, src_dtype: torch.dtype, reduction_type: ReductionType, value: Union[None, Tuple[None, ...]], ) -> Union[None, Tuple[None, ...]]: num_values = reduction_num_outputs(reduction_type) return (None,) * num_values if num_values > 1 else None def _typecheck_FreeUnbackedSymbolsOpsHandler( h: FreeUnbackedSymbolsOpsHandler, ) -> OpsHandler[None]: return h def extract_free_unbacked_symbols(fn: Callable[..., Any], index, rindex=None): from .ir import FlexibleLayout args = [index, rindex] if rindex is not None else [index] handler = FreeUnbackedSymbolsOpsHandler() # NB: I cargo culted the allow_indexing patch here, I don't understand why # people do this all over with V.set_ops_handler(handler), patch.object( FlexibleLayout, "allow_indexing", True ): fn(*args) return handler.symbols