# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils import is_accelerate_available, is_fbgemm_gpu_available, is_torch_available, logging if is_torch_available(): import torch from torch import nn if is_accelerate_available(): from accelerate import init_empty_weights if is_fbgemm_gpu_available(): import fbgemm_gpu.experimental.gen_ai # noqa: F401 logger = logging.get_logger(__name__) class FbgemmFp8Linear(torch.nn.Module): def __init__(self, in_features, out_features, bias, weight_dtype=torch.float32): super().__init__() self.in_features = in_features self.out_features = out_features self.register_buffer("weight", torch.zeros((out_features, in_features), dtype=torch.float8_e4m3fn)) self.register_buffer("weight_scale", torch.zeros((out_features, 1), dtype=weight_dtype)) self.register_buffer("input_scale_ub", torch.zeros([1], dtype=torch.float), persistent=False) if bias: self.register_buffer("bias", torch.zeros((self.out_features), dtype=weight_dtype)) else: self.bias = None def forward(self, x): num_tokens = None # x_quantized and x_scale are not necessarily on the same device as x, this is an issue. # https://github.com/pytorch/FBGEMM/blob/e08af8539c391437f447173863df0f3f6f6f1855/fbgemm_gpu/experimental/gen_ai/src/quantize/quantize.cu#L1237C3-L1237C45 x_quantized, x_scale = torch.ops.fbgemm.quantize_fp8_per_row( x.view(-1, x.shape[-1]), num_tokens, self.input_scale_ub ) # moving x_quantized, x_scale here creates glibberish output ... However, if we move the output, it works # x_quantized, x_scale = x_quantized.to(x.device), x_scale.to(x.device) # The computation still happens on the device where self.weight is even if x_quantized is not on the same device as self.weight output = torch.ops.fbgemm.f8f8bf16_rowwise( x_quantized, self.weight, x_scale, self.weight_scale, use_fast_accum=True ) output = output + self.bias if self.bias is not None else output # Hacky for now, we have the output to the device of x output = output.to(x.device) del x_quantized, x_scale return output def _replace_with_fbgemm_fp8_linear( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, has_been_replaced=False, pre_quantized=False, ): """ Private method that wraps the recursion for module replacement. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. """ if current_key_name is None: current_key_name = [] for name, module in model.named_children(): current_key_name.append(name) if (isinstance(module, nn.Linear)) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` current_key_name_str = ".".join(current_key_name) if not any( (key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert ): with init_empty_weights(include_buffers=True): in_features = module.in_features out_features = module.out_features model._modules[name] = FbgemmFp8Linear( in_features, out_features, module.bias is not None, ) has_been_replaced = True # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) # set non persistant buffer outside of init_empty_weights model._modules[name].input_scale_ub = torch.tensor( [quantization_config.activation_scale_ub], dtype=torch.float ) if len(list(module.children())) > 0: _, has_been_replaced = _replace_with_fbgemm_fp8_linear( module, modules_to_not_convert, current_key_name, quantization_config, has_been_replaced=has_been_replaced, pre_quantized=pre_quantized, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def replace_with_fbgemm_fp8_linear( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, pre_quantized=False ): """ A helper function to replace all `torch.nn.Linear` modules by `FbgemmFp8Linear` modules. This will enable running your models using high performance fp8 kernel from FBGEMM library. The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` that should be kept as a `torch.nn.Linear` module. The replacement is done under `init_empty_weights` context manager so no CPU/GPU memory is required to run this function. Each weight will be quantized along the channel. Parameters: model (`torch.nn.Module`): Input model or `torch.nn.Module` as the function is run recursively. modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`): Names of the modules to not convert in `FP8Linear`. In practice we keep the `lm_head` in full precision for numerical stability reasons. current_key_name (`List[`str`]`, *optional*): An array to track the current key of the recursion. This is used to check whether the current key (part of it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or `disk`). """ modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert if quantization_config.modules_to_not_convert is not None: modules_to_not_convert.extend(quantization_config.modules_to_not_convert) modules_to_not_convert = list(set(modules_to_not_convert)) model, has_been_replaced = _replace_with_fbgemm_fp8_linear( model, modules_to_not_convert, current_key_name, quantization_config, pre_quantized=pre_quantized ) if not has_been_replaced: logger.warning( "You are loading your model using FP8 quantization but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model